
Susana de la Luna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1324524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death and Differentiation, 2022, 29, 105-117.	5.0	16
2	An RNA Polymerase III General Transcription Factor Engages in Cell Type-Specific Chromatin Looping. International Journal of Molecular Sciences, 2022, 23, 2260.	1.8	4
3	TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. Molecular Cell, 2020, 77, 475-487.e11.	4.5	65
4	The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers, 2020, 12, 2106.	1.7	55
5	Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiology of Disease, 2019, 127, 210-222.	2.1	35
6	A comprehensive proteomics-based interaction screen that links DYRK1A to RNF169 and to the DNA damage response. Scientific Reports, 2019, 9, 6014.	1.6	34
7	DYRK1A modulates c-MET in pancreatic ductal adenocarcinoma to drive tumour growth. Gut, 2019, 68, 1465-1476.	6.1	52
8	DYRK1A Kinase Positively Regulates Angiogenic Responses in Endothelial Cells. Cell Reports, 2018, 23, 1867-1878.	2.9	34
9	Key Role of Amino Acid Repeat Expansions in the Functional Diversification of Duplicated Transcription Factors. Molecular Biology and Evolution, 2015, 32, 2263-2272.	3.5	24
10	Chromatin-wide Profiling of DYRK1A Reveals a Role as a Gene-Specific RNA Polymerase II CTD Kinase. Molecular Cell, 2015, 57, 506-520.	4.5	103
11	DYRK1A-mediated phosphorylation of GluN2A at Ser1048 regulates the surface expression and channel activity of GluN1/GluN2A receptors. Frontiers in Cellular Neuroscience, 2014, 8, 331.	1.8	39
12	Splice Variants of the Dual Specificity Tyrosine Phosphorylation-regulated Kinase 4 (DYRK4) Differ in Their Subcellular Localization and Catalytic Activity*. Journal of Biological Chemistry, 2011, 286, 5494-5505.	1.6	41
13	DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB Journal, 2011, 25, 449-462.	0.2	272
14	Characterization of a mouse model overexpressing betaâ€site APPâ€cleaving enzyme 2 reveals a new role for BACE2. Genes, Brain and Behavior, 2010, 9, 160-172.	1.1	23
15	Regulated Segregation of Kinase Dyrk1A during Asymmetric Neural Stem Cell Division Is Critical for EGFR-Mediated Biased Signaling. Cell Stem Cell, 2010, 7, 367-379.	5.2	71
16	The RCAN carboxyl end mediates calcineurin docking-dependent inhibition via a site that dictates binding to substrates and regulators. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6117-6122.	3.3	45
17	Genome-Wide Analysis of Histidine Repeats Reveals Their Role in the Localization of Human Proteins to the Nuclear Speckles Compartment. PLoS Genetics, 2009, 5, e1000397.	1.5	118
18	Intersectin 1 forms a complex with adaptor protein Ruk/CIN85 in vivo independently of epidermal growth factor stimulation. Cellular Signalling, 2009, 21, 753-759.	1.7	27

Susana de la Luna

#	Article	IF	CITATIONS
19	The Protein Kinase DYRK1A Regulates Caspase-9-Mediated Apoptosis during Retina Development. Developmental Cell, 2008, 15, 841-853.	3.1	108
20	Sprouty2-Mediated Inhibition of Fibroblast Growth Factor Signaling Is Modulated by the Protein Kinase DYRK1A. Molecular and Cellular Biology, 2008, 28, 5899-5911.	1.1	62
21	Renaming the DSCR1 / Adapt78 gene family as RCAN : regulators of calcineurin. FASEB Journal, 2007, 21, 3023-3028.	0.2	157
22	DYRK1A Autophosphorylation on Serine Residue 520 Modulates Its Kinase Activity via 14-3-3 Binding. Molecular Biology of the Cell, 2007, 18, 1167-1178.	0.9	73
23	Differential expression of members of the RCAN family of calcineurin regulators suggests selective functions for these proteins in the brain. European Journal of Neuroscience, 2007, 26, 1213-1226.	1.2	33
24	Identification of PatL1, a human homolog to yeast P body component Pat1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1786-1792.	1.9	54
25	Cooperation to amplify gene-dosage-imbalance effects. Trends in Molecular Medicine, 2006, 12, 451-454.	3.5	17
26	Dyrk1A expression pattern supports specific roles of this kinase in the adult central nervous system. Brain Research, 2003, 964, 250-263.	1.1	125
27	The molecular basis of glutamate formiminotransferase deficiency. Human Mutation, 2003, 22, 67-73.	1.1	57
28	DYRK1A accumulates in splicing speckles through a novel targeting signal and induces speckle disassembly. Journal of Cell Science, 2003, 116, 3099-3107.	1.2	137
29	Phosphorylation of calcipressin 1 increases its ability to inhibit calcineurin and decreases calcipressin half-life. Biochemical Journal, 2003, 374, 567-575.	1.7	94
30	The human intersectin genes and their spliced variants are differentially expressed. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1521, 1-11.	2.4	56
31	Structural Determinants of KvLQT1 Control by the KCNE Family of Proteins. Journal of Biological Chemistry, 2001, 276, 6439-6444.	1.6	103
32	DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Human Molecular Genetics, 2000, 9, 1681-1690.	1.4	426
33	Cold shock induces the insertion of a cryptic exon in the neurofibromatosis type 1 (NF1) mRNA. Nucleic Acids Research, 2000, 28, 1307-1312.	6.5	48
34	Intersectin 2, a new multimodular protein involved in clathrin-mediated endocytosis. FEBS Letters, 2000, 478, 43-51.	1.3	83
35	A new aspartyl protease on 21q22.3, BACE2, is highly similar to Alzheimer's amyloid precursor protein β-secretase. Cytogenetic and Genome Research, 2000, 89, 177-184.	0.6	81
36	Eukaryotic Translation Initiation Factor 4GI Is a Cellular Target for NS1 Protein, a Translational Activator of Influenza Virus. Molecular and Cellular Biology, 2000, 20, 6259-6268.	1.1	181

Susana de la Luna

#	Article	IF	CITATIONS
37	Cloning and characterization of human FTCD on 21q22.3, a candidate gene for glutamate formiminotransferase deficiency. Cytogenetic and Genome Research, 2000, 88, 43-49.	0.6	32
38	Eukaryotic Translation Initiation Factor 4GI Is a Cellular Target for NS1 Protein, a Translational Activator of Influenza Virus. Molecular and Cellular Biology, 2000, 20, 6259-6268.	1.1	19
39	Alu-splice cloning of human Intersectin (ITSN), a putative multivalent binding protein expressed in proliferating and differentiating neurons and overexpressed in Down syndrome. European Journal of Human Genetics, 1999, 7, 704-712.	1.4	74
40	Integration of a growth-suppressing BTB/POZ domain protein with the DP component of the E2F transcription factor. EMBO Journal, 1999, 18, 212-228.	3.5	76
41	[21] Systems to express recombinant RNA molecules by the influenza A virus polymerase in vivo. Methods in Molecular Genetics, 1995, 7, 329-342.	0.6	9
42	pac Gene as Efficient Dominant Marker and Reporter Gene in Mammalian Cells. , 1995, , 129-138.		0
43	Epitope mapping of cross-reactive monoclonal antibodies specific for the influenza A virus PA and PB2 polypeptides. Virus Research, 1995, 37, 305-315.	1.1	25
44	Individual expression of influenza virus PA protein induces degradation of coexpressed proteins. Journal of Virology, 1995, 69, 2420-2426.	1.5	91
45	Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. Journal of Virology, 1995, 69, 2427-2433.	1.5	153
46	Monoclonal antibodies against influenza virus PB2 and NP polypeptides interfere with the initiation step of viral mRNA synthesis in vitro. Journal of Virology, 1994, 68, 6900-6909.	1.5	77
47	[33] pac Gene as efficient dominant marker and reporter gene in mammalian cells. Methods in Enzymology, 1992, 216, 376-385.	0.4	57
48	Nuclear transport of influenza virus polymerase PA protein. Virus Research, 1992, 24, 65-75.	1.1	62
49	Molecular cloning and sequencing of influenza virus A/Victoria/3/75 polymerase genes: sequence evolution and prediction of possible functional domains. Virus Research, 1989, 13, 143-155.	1.1	67
50	Resistance to foot-and-mouth disease virus mediated by trans-acting cellular products. Journal of Virology, 1989, 63, 2385-2387.	1.5	30
51	Efficient transformation of mammalian cells with constructs containing a puromycin-resistance marker. Gene, 1988, 62, 121-126.	1.0	151
52	Permanent cell tines established fromts-COS cells that regulate by temperature the amplification and expression of cloned genes. Nucleic Acids Research, 1987, 15, 6117-6129.	6.5	8
53	Regulation of gene amplification and expression in cells that constitutively express a temperature sensitive SV40 T-antigen. Nucleic Acids Research, 1985, 13, 7913-7927.	6.5	11