Yan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323996/publications.pdf

Version: 2024-02-01

567281 752698 2,216 20 15 20 h-index citations g-index papers 20 20 20 3588 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TIGAR plays neuroprotective roles in KA-induced excitotoxicity through reducing neuroinflammation and improving mitochondrial function. Neurochemistry International, 2022, 152, 105244.	3.8	4
2	Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacologica Sinica, 2022, 43, 2439-2447.	6.1	67
3	NADPH and Mito-Apocynin Treatment Protects Against KA-Induced Excitotoxic Injury Through Autophagy Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 612554.	3.7	10
4	NF- $\hat{\mathbb{P}}$ B is involved in the regulation of autophagy in mutant p53 cells in response to ionizing radiation. Cell Death Discovery, 2021, 7, 159.	4.7	6
5	NADPH protects against kainic acid-induced excitotoxicity via autophagy-lysosome pathway in rat striatum and primary cortical neurons. Toxicology, 2020, 435, 152408.	4.2	16
6	Cathepsin L induced PC-12 cell apoptosis via activation of B-Myb and regulation of cell cycle proteins. Acta Pharmacologica Sinica, 2019, 40, 1394-1403.	6.1	14
7	Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neuroscience and Therapeutics, 2019, 25, 859-875.	3.9	145
8	Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neuroscience and Therapeutics, 2019, 25, 816-824.	3.9	186
9	Autophagy and Ubiquitin-Proteasome System. Advances in Experimental Medicine and Biology, 2019, 1206, 527-550.	1.6	96
10	Reduced Nicotinamide Adenine Dinucleotide Phosphate Inhibits MPTP-Induced Neuroinflammation and Neurotoxicity. Neuroscience, 2018, 391, 140-153.	2.3	18
11	Ubiquitination of ABCE1 by NOT4 in Response to Mitochondrial Damage Links Co-translational Quality Control to PINK1-Directed Mitophagy. Cell Metabolism, 2018, 28, 130-144.e7.	16.2	61
12	Microglia activation contributes to quinolinic acid-induced neuronal excitotoxicity through TNF-α. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 696-709.	4.9	28
13	Coordination of autophagy with other cellular activities. Acta Pharmacologica Sinica, 2013, 34, 585-594.	6.1	46
14	Cathepsin L Plays a Role in Quinolinic Acid-Induced NF-Κb Activation and Excitotoxicity in Rat Striatal Neurons. PLoS ONE, 2013, 8, e75702.	2.5	14
15	The regulation of N-terminal Huntingtin (Htt552) accumulation by Beclin1. Acta Pharmacologica Sinica, 2012, 33, 743-751.	6.1	47
16	Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1382-1402.	4.9	349
17	Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica, 2009, 30, 379-387.	6.1	890
18	p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. European Journal of Neuroscience, 2009, 30, 2258-2270.	2.6	60

#	Article	IF	CITATIONS
19	An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid. Autophagy, 2008, 4, 214-226.	9.1	128
20	Lysosomal enzyme cathepsin B is involved in kainic acid-induced excitotoxicity in rat striatum. Brain Research, 2006, 1071, 245-249.	2.2	31