
Dumitru Luca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/132388/publications.pdf Version: 2024-02-01

Ουματρίι Ι.υςλ

#	Article	IF	CITATIONS
1	Surface Wettability of ZnO-Loaded TiO2 Nanotube Array Layers. Nanomaterials, 2020, 10, 1901.	4.1	9
2	Computer-aided detection and morphological characterization of nanotube layers using scanning electron microscopy images. Journal of Applied Physics, 2020, 127, 105102.	2.5	1
3	Synthesis and optimization of photocatalytic performance of WO3-loaded TiO2 nanotube array layers. Semiconductor Science and Technology, 2019, 34, 075027.	2.0	2
4	On the hydrophilicity of Ni-doped TiO2 thin films. A study by X-ray absorption spectroscopy. Thin Solid Films, 2018, 657, 42-49.	1.8	5
5	Tailoring the Surface Functionalities of Radio Frequency Magnetron-Sputtered ZnO Thin Films by Ar/NH ₃ Gas Mixture Surface-Wave Plasmas. Langmuir, 2018, 34, 11253-11263.	3.5	5
6	Growth and characterization of TiO2 nanotube arrays under dynamic anodization. Photocatalytic activity. Journal of Electroanalytical Chemistry, 2018, 823, 388-396.	3.8	17
7	The effect of CO2 gas adsorption on the electrical properties of Fe doped TiO2 films. Physica B: Condensed Matter, 2017, 524, 17-21.	2.7	12
8	Platinum role in hydrophilicity enhancement of Cr-doped TiO2 thin films. Philosophical Magazine, 2016, 96, 3000-3015.	1.6	1
9	Synthesis and characterization of RF sputtered WO3/TiO2 bilayers. Surface and Coatings Technology, 2016, 285, 197-202.	4.8	15
10	Local Ordering at the Interface of the TiO2-WO3 Bi-Layers. Nanoscience and Technology, 2016, , 317-331.	1.5	1
11	Nb-doped TiO2 thin films as photocatalytic materials. Bulletin of Materials Science, 2015, 38, 1259-1262.	1.7	6
12	Synthesis and Characterization of Nb-Doped TiO ₂ Thin Films Prepared by RF Magnetron Sputtering. Advanced Materials Research, 2015, 1117, 139-142.	0.3	2
13	Mass spectrometric study of Ar/NH ₃ surface wave plasma utilized for surface functionalization of ZnO nanoparticles. Japanese Journal of Applied Physics, 2014, 53, 010207.	1.5	6
14	Synthesis and hydrophilic properties of Mo doped TiO2 thin films. Journal of Applied Physics, 2014, 115, .	2.5	16
15	Surface characterization of sputtered N:TiO2 thin films within a wide range of dopant concentration. Ceramics International, 2014, 40, 9989-9995.	4.8	16
16	Optical properties of Nb-doped TiO2 thin films prepared by sol–gel method. Ceramics International, 2013, 39, 4771-4776.	4.8	65
17	Characterization of Rutile N-Doped TiO ₂ Films Prepared by RF Magnetron Sputtering. Key Engineering Materials, 2013, 543, 277-280.	0.4	0
18	Analyzing the Development of N-Doped TiO ₂ Thin Films Deposited by RF Magnetron Sputtering. Sensor Letters, 2013, 11, 675-678.	0.4	3

DUMITRU LUCA

#	Article	IF	CITATIONS
19	Surface wettability of titania thin films with increasing Nb content. Journal of Applied Physics, 2012, 112, .	2.5	29
20	The Meyer–Neldel rule in amorphous TiO ₂ films with different Fe content. Journal of Materials Research, 2012, 27, 2271-2277.	2.6	15
21	Structural, Magnetic and Magnetoelastic Behaviour of FeCuNbSiB Thin Films. Sensor Letters, 2012, 10, 902-905.	0.4	4
22	Preparation and characterisation of PZT films by RF-magnetron sputtering. Journal of Alloys and Compounds, 2011, 509, 6242-6246.	5.5	22
23	UV irradiation influence on the structural and optical properties of CdO thin films. EPJ Applied Physics, 2011, 55, 10301.	0.7	3
24	X-ray absorption fine structure investigations on heat-treated Cr-doped titania thin films. Thin Solid Films, 2011, 520, 1348-1352.	1.8	3
25	XPS study of the ion-exchange capacity of the native and surface oxidized viscose fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 106-110.	4.7	13
26	Structural study of sol–gel Au/TiO2 films from nanopowders. Applied Surface Science, 2011, 257, 4227-4231.	6.1	19
27	Structural and optical characterization of Al-doped ZnO films prepared by thermal oxidation of evaporated Zn/Al multilayered films. Materials Chemistry and Physics, 2010, 123, 314-321.	4.0	54
28	Undoped and Cr-doped TiO2 thin films obtained by spray pyrolysis. Thin Solid Films, 2010, 518, 4586-4589.	1.8	34
29	Combining degradation and contact angle data in assessing the photocatalytic TiO ₂ :N surface. Surface and Interface Analysis, 2010, 42, 947-954.	1.8	15
30	Cavity-hollow cathode-sputtering source for titanium films. Journal of Plasma Physics, 2010, 76, 655-664.	2.1	6
31	PHOTOINDUCED WETTABILITY OF TITANIUM OXIDE THIN FILMS. Chemical Engineering Communications, 2010, 198, 530-540.	2.6	5
32	Nanostructured thin layers of vanadium oxides doped with cobalt, prepared by pulsed laser ablation: chemistry, local atomic structure, morphology and magnetism. Journal of Experimental Nanoscience, 2010, 5, 509-526.	2.4	11
33	Preparation and properties of (1â~'x)BiFeO3–xBaTiO3 multiferroic ceramics. Journal of Alloys and Compounds, 2010, 506, 862-867.	5.5	80
34	Gas sensing materials based on TiO2 thin films. Journal of Vacuum Science & Technology B, 2009, 27, 538-541.	1.3	10
35	Photo-degradation activity of sputter-deposited nitrogen-doped titania thin films. Thin Solid Films, 2009, 518, 1040-1043.	1.8	4
36	Crystallization study of sol–gel un-doped and Pd-doped TiO2 materials. Journal of Physics and Chemistry of Solids, 2008, 69, 2548-2554.	4.0	35

DUMITRU LUCA

#	Article	IF	CITATIONS
37	TiO2 thin films as sensing gas materials. Journal of Non-Crystalline Solids, 2008, 354, 4396-4400.	3.1	54
38	Structural and Electro-Optical Properties of ZnO Thin Films. , 2007, , .		0
39	Influence of Substrate Nature and Annealing on Electro-Optical Properties of ZnO Thin Films. AIP Conference Proceedings, 2007, , .	0.4	0
40	Substrate and Fe-doping effects on the hydrophilic properties of TiO2 thin films. Thin Solid Films, 2007, 515, 6474-6478.	1.8	16
41	Investigation of structural properties of ITO thin films deposited on different substrates. Thin Solid Films, 2007, 515, 8674-8678.	1.8	12
42	On the hydrophilicity of nitrogen-doped TiO2 thin films. Surface Science, 2007, 601, 4515-4520.	1.9	65
43	Preparation and characterization of increased-efficiency photocatalytic TiO2–2xNx thin films. Thin Solid Films, 2007, 515, 8605-8610.	1.8	39
44	Radiation Efficiency of AC-excited Micro Hollow Cathode Discharges. AIP Conference Proceedings, 2006, , .	0.4	1
45	Increasing surface hydrophilicity of titania thin films by doping. Applied Surface Science, 2006, 252, 6122-6126.	6.1	39
46	Characterization of titania thin films prepared by reactive pulsed-laser ablation. Surface Science, 2006, 600, 4342-4346.	1.9	41
47	Comparative study of magnetism and interface composition in Fe/GaAs(100) and Fe/InAs(100). Surface Science, 2006, 600, 4200-4204.	1.9	14
48	Optical Emission Spectroscopy Diagnostic of Discharge Plasma in a Hollow-Cathode Sputtering Source. Japanese Journal of Applied Physics, 2006, 45, 8128-8131.	1.5	5
49	Pulsed Regime of a Hollow-Cathode Discharge Used in a Sputter Source. Japanese Journal of Applied Physics, 2006, 45, 8132-8136.	1.5	4
50	Surface nitridation processes and non-linear behaviour of the reactive magnetron discharge with titanium target. Vacuum, 2001, 61, 163-167.	3.5	3
51	Ti-N thin layer deposition using the magnetron discharge. Vacuum, 1996, 47, 1103-1104.	3.5	1