
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 1999, 399, 483-487.	13.7	2,018
4	Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell, 2003, 113, 703-716.	13.5	1,991
5	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	13.5	1,551
6	Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO Journal, 2003, 22, 4212-4222.	3.5	1,131
7	Autophagy mediates the mitotic senescence transition. Genes and Development, 2009, 23, 798-803.	2.7	883
8	G-quadruplex structures mark human regulatory chromatin. Nature Genetics, 2016, 48, 1267-1272.	9.4	683
9	Cellular senescence and its effector programs. Genes and Development, 2014, 28, 99-114.	2.7	658
10	A Novel Role for High-Mobility Group A Proteins in Cellular Senescence and Heterochromatin Formation. Cell, 2006, 126, 503-514.	13.5	529
11	Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes. Science, 2011, 332, 966-970.	6.0	469
12	Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biology, 2002, 4, 859-864.	4.6	394
13	Inside and out: the activities of senescence in cancer. Nature Reviews Cancer, 2014, 14, 547-558.	12.8	394
14	NOTCH1 mediates a switch between two distinct secretomes during senescence. Nature Cell Biology, 2016, 18, 979-992.	4.6	365
15	Dissecting the Unique Role of the Retinoblastoma Tumor Suppressor during Cellular Senescence. Cancer Cell, 2010, 17, 376-387.	7.7	323
16	14-3-3 Interacts Directly with and Negatively Regulates Pro-apoptotic Bax. Journal of Biological Chemistry, 2003, 278, 2058-2065.	1.6	307
17	Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes and Development, 2013, 27, 1800-1808.	2.7	259
18	Independence of Repressive Histone Marks and Chromatin Compaction during Senescent Heterochromatic Layer Formation. Molecular Cell, 2012, 47, 203-214.	4.5	258

#	Article	IF	CITATIONS
19	Impact of cellular senescence signature on ageing research. Ageing Research Reviews, 2011, 10, 146-152.	5.0	233
20	SASP reflects senescence. EMBO Reports, 2009, 10, 228-230.	2.0	164
21	Senescence comes of age. Nature Medicine, 2005, 11, 920-922.	15.2	147
22	<i>HMGA2</i> Overexpression-Induced Ovarian Surface Epithelial Transformation Is Mediated Through Regulation of EMT Genes. Cancer Research, 2011, 71, 349-359.	0.4	132
23	Spatial and Temporal Control of Senescence. Trends in Cell Biology, 2017, 27, 820-832.	3.6	127
24	Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nature Communications, 2014, 5, 5210.	5.8	119
25	Psoriasis Risk Genes of the Late Cornified Envelope-3 Group Are Distinctly Expressed Compared with Genes of Other LCE Groups. American Journal of Pathology, 2011, 178, 1470-1477.	1.9	90
26	Transmitting senescence to the cell neighbourhood. Nature Cell Biology, 2013, 15, 887-889.	4.6	90
27	Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa. Journal of Proteome Research, 2016, 15, 976-982.	1.8	89
28	Oncogenic HMGA2: short or small?. Genes and Development, 2007, 21, 1005-1009.	2.7	88
29	ILâ€1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescenceâ€associated secretory phenotype. Aging Cell, 2019, 18, e12946.	3.0	77
30	Connecting autophagy to senescence in pathophysiology. Current Opinion in Cell Biology, 2010, 22, 234-240.	2.6	72
31	Autophagy facilitates oncogene-induced senescence. Autophagy, 2009, 5, 1046-1047.	4.3	67
32	Short-term gain, long-term pain: the senescence life cycle and cancer. Genes and Development, 2019, 33, 127-143.	2.7	64
33	Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nature Communications, 2020, 11, 307.	5.8	62
34	NG2 expression in glioblastoma identifies an actively proliferating population with an aggressive molecular signature. Neuro-Oncology, 2011, 13, 830-845.	0.6	60
35	NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence. Nature Communications, 2018, 9, 1840.	5.8	57
36	Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogeneâ€induced senescent cells. Aging Cell, 2015, 14, 689-697.	3.0	53

#	Article	IF	CITATIONS
37	Normalization of metabolomics data with applications to correlation maps. Bioinformatics, 2014, 30, 2155-2161.	1.8	51
38	Oncogenes and senescence: breaking down in the fast lane. Genes and Development, 2007, 21, 1-5.	2.7	49
39	Cancer cell senescence: a new frontier in drug development. Drug Discovery Today, 2012, 17, 269-276.	3.2	49
40	High-order chromatin structure and the epigenome in SAHFs. Nucleus, 2013, 4, 23-28.	0.6	49
41	p400 Is Required for E1A to Promote Apoptosis. Journal of Biological Chemistry, 2005, 280, 21915-21923.	1.6	48
42	Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53. PLoS Genetics, 2015, 11, e1005053.	1.5	47
43	Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Molecular Biology of the Cell, 2015, 26, 2971-2985.	0.9	42
44	Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence. Nature Communications, 2020, 11, 6049.	5.8	42
45	Epigenetic priming by Dppa2 and 4 in pluripotency facilitates multi-lineage commitment. Nature Structural and Molecular Biology, 2020, 27, 696-705.	3.6	41
46	Old cells, new tricks: chromatin structure in senescence. Mammalian Genome, 2016, 27, 320-331.	1.0	40
47	COX2 regulates senescence secretome composition and senescence surveillance through PGE2. Cell Reports, 2021, 34, 108860.	2.9	39
48	Autophagy in cancer: Having your cake and eating it. Seminars in Cancer Biology, 2011, 21, 397-404.	4.3	38
49	Cell Senescence as Both a Dynamic and a Static Phenotype. Methods in Molecular Biology, 2013, 965, 1-13.	0.4	37
50	A novel <i>Atg5</i> -shRNA mouse model enables temporal control of Autophagy <i>in vivo</i> . Autophagy, 2018, 14, 1256-1266.	4.3	35
51	<i>Letâ€₹</i> repression leads to HMGA2 overexpression in uterine leiomyosarcoma. Journal of Cellular and Molecular Medicine, 2009, 13, 3898-3905.	1.6	34
52	Quantitative assessment of higherâ€order chromatin structure of the <i>INK4/ARF</i> locus in human senescent cells. Aging Cell, 2012, 11, 553-556.	3.0	34
53	Spatio-temporal association between mTOR and autophagy during cellular senescence. Autophagy, 2011, 7, 1387-1388.	4.3	33
54	The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell, 2011, 10, 158-171.	3.0	32

#	Article	IF	CITATIONS
55	Neuron typeâ€ s pecific increase in lamin B1 contributes to nuclear dysfunction in Huntington's disease. EMBO Molecular Medicine, 2021, 13, e12105.	3.3	28
56	Executing Cell Senescence. Cell Cycle, 2004, 3, 242-244.	1.3	26
57	Translating the effects of mTOR on secretory senescence. Nature Cell Biology, 2015, 17, 1230-1232.	4.6	25
58	Autophagy at the intersection of aging, senescence, and cancer. Molecular Oncology, 2022, 16, 3259-3275.	2.1	23
59	The Power Behind the Throne: Senescence and the Hallmarks of Cancer. Annual Review of Cancer Biology, 2018, 2, 175-194.	2.3	21
60	p53 in senescence – it's a marathon, not a sprint. FEBS Journal, 2023, 290, 1212-1220.	2.2	21
61	Independent Prognostic Factors in Breast Cancer Patients. American Journal of Surgery, 1998, 175, 73-75.	0.9	18
62	Identification of a Selective G1-Phase Benzimidazolone Inhibitor by a Senescence-Targeted Virtual Screen Using Artificial Neural Networks. Neoplasia, 2015, 17, 704-715.	2.3	18
63	Quality and quantity control of proteins in senescence. Aging, 2010, 2, 311-314.	1.4	16
64	Metabolomic changes during cellular transformation monitored by metabolite–metabolite correlation analysis and correlated with gene expression. Metabolomics, 2015, 11, 1848-1863.	1.4	14
65	NOTCH and the 2 SASPs of senescence. Cell Cycle, 2017, 16, 239-240.	1.3	14
66	Notch and Senescence. Advances in Experimental Medicine and Biology, 2018, 1066, 299-318.	0.8	14
67	Senescence-induced endothelial phenotypes underpin immune-mediated senescence surveillance. Genes and Development, 2022, 36, 533-549.	2.7	14
68	GATA get a hold on senescence. Science, 2015, 349, 1448-1449.	6.0	12
69	Locus-specific induction of gene expression from heterochromatin loci during cellular senescence. Nature Aging, 2022, 2, 31-45.	5.3	12
70	Autophagy and senescence, converging roles in pathophysiology as seen through mouse models. Advances in Cancer Research, 2021, 150, 113-145.	1.9	10
71	A â€~synthetic-sickness' screen for senescence re-engagement targets in mutant cancer backgrounds. PLoS Genetics, 2017, 13, e1006942.	1.5	9
72	Rags connect mTOR and autophagy. Small GTPases, 2012, 3, 111-114.	0.7	8

MASASHI NARITA

#	ARTICLE	IF	CITATIONS
73	Multiple expression cassette exchange via <scp>TP</scp> 901â€1, R4, and Bxb1 integrase systems on a mouse artificial chromosome. FEBS Open Bio, 2017, 7, 306-317.	1.0	7
74	A case of microangiopathic hemolytic anemia associated with breast cancer: Improvement with chemoendocrine therapy. Breast Cancer, 1997, 4, 39-42.	1.3	6
75	Autophagy Detection During Oncogene-Induced Senescence Using Fluorescence Microscopy. Methods in Molecular Biology, 2017, 1534, 89-98.	0.4	5
76	Improving Literature-Based Discovery with Advanced Text Mining. Lecture Notes in Computer Science, 2015, , 89-98.	1.0	4
77	The expanding territories of condensin II. Cell Cycle, 2015, 14, 2723-2724.	1.3	3
78	Dynamic modulation of autophagy: implications for aging and cancer. Molecular and Cellular Oncology, 2020, 7, 1754723.	0.3	2
79	Putting the DOT on IL1A. Journal of Cell Biology, 2021, 220, .	2.3	2
80	Crisis management by autophagy. Nature Structural and Molecular Biology, 2019, 26, 151-152.	3.6	1
81	A Case of Lactic Acidosis from Vitamin B1 Deficiency during Total Parenteral Nutrition Japanese Journal of Gastroenterological Surgery, 1997, 30, 97-101.	0.0	1
82	A role for CUX1 in the regulation of p16 and senescence. Nature Aging, 2022, 2, 100-101.	5.3	1
83	Abstract SY02-03: Chromatin architecture and gene regulation in oncogene-induced senescence , 2013, , .		0
84	A Case Report of Celiac Axis Compression Syndrome Combined with Gastric Cancer. Diagnosis by Doppler Ultrasonography Japanese Journal of Gastroenterological Surgery, 1994, 27, 2578-2582.	0.0	0
85	Abstract SY10-01: Chromatin structure change and aberrant gene expression during senescence. , 2015, , .		0

86 Abstract SY10-04: Histone tail alterations in cellular senescence. , 2015, , .

0