Ernesto Guccione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323857/publications.pdf

Version: 2024-02-01

82 7,287 papers citations

39 h-index

81743

81 g-index

89 all docs 89 docs citations 89 times ranked 11968 citing authors

#	Article	IF	CITATIONS
1	The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism. Cell, 2012, 151, 1185-1199.	13.5	561
2	Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature, 2014, 511, 488-492.	13.7	411
3	Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature, 2007, 449, 933-937.	13.7	402
4	The regulation, functions and clinical relevance of arginine methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 642-657.	16.1	364
5	Myc-binding-site recognition in the human genome is determined by chromatin context. Nature Cell Biology, 2006, 8, 764-770.	4.6	333
6	MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature, 2015, 523, 96-100.	13.7	317
7	Chromatin and Transcription Transitions of Mammalian Adult Germline Stem Cells and Spermatogenesis. Cell Stem Cell, 2014, 15, 239-253.	5.2	280
8	Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nature Structural and Molecular Biology, 2012, 19, 136-144.	3.6	272
9	Regulation of constitutive and alternative splicing by PRMT5 reveals a role for <i>Mdm4</i> pre-mRNA in sensing defects in the spliceosomal machinery. Genes and Development, 2013, 27, 1903-1916.	2.7	213
10	Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell, 2020, 37, 55-70.e15.	7.7	200
11	Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene, 2002, 21, 5088-5096.	2.6	188
12	Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation. Cancer Cell, 2019, 36, 194-209.e9.	7.7	184
13	Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood, 2001, 97, 2098-2104.	0.6	181
14	Trained immunity in newborn infants of HBV-infected mothers. Nature Communications, 2015, 6, 6588.	5.8	149
15	Discovery of a first-in-class EZH2 selective degrader. Nature Chemical Biology, 2020, 16, 214-222.	3.9	148
16	PRMT5 Is a Critical Regulator of Breast Cancer Stem Cell Function via Histone Methylation and FOXP1 Expression. Cell Reports, 2017, 21, 3498-3513.	2.9	138
17	Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth. Journal of Clinical Investigation, 2015, 126, 68-84.	3.9	138
18	Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. Journal of Clinical Investigation, 2015, 125, 2109-2122.	3.9	134

#	Article	IF	Citations
19	LLY-283, a Potent and Selective Inhibitor of Arginine Methyltransferase 5, PRMT5, with Antitumor Activity. ACS Medicinal Chemistry Letters, 2018, 9, 612-617.	1.3	127
20	The Ankrd2 Protein, a Link Between the Sarcomere and the Nucleus in Skeletal Muscle. Journal of Molecular Biology, 2004, 339, 313-325.	2.0	125
21	Analysis of Myc-Induced Histone Modifications on Target Chromatin. PLoS ONE, 2008, 3, e3650.	1.1	120
22	Proteomics profiling of arginine methylation defines PRMT5 substrate specificity. Science Signaling, 2019, 12, .	1.6	114
23	Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell, 2020, 183, 786-801.e19.	13.5	101
24	Epigenome Microarray Platform for Proteome-Wide Dissection of Chromatin-Signaling Networks. PLoS ONE, 2009, 4, e6789.	1.1	91
25	p53-Independent regulation of p21Waf1/Cip1 expression and senescence by PRMT6. Nucleic Acids Research, 2012, 40, 9534-9542.	6.5	86
26	Differential effects of the second SARS-CoV-2 mRNA vaccine dose on Tâcell immunity in naive and COVID-19 recovered individuals. Cell Reports, 2021, 36, 109570.	2.9	86
27	TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell, 2021, 184, 2618-2632.e17.	13.5	80
28	The role of PRDMs in cancer: one family, two sides. Current Opinion in Genetics and Development, 2016, 36, 83-91.	1.5	77
29	PRMT5-mediated regulation of developmental myelination. Nature Communications, 2018, 9, 2840.	5.8	7 3
30	PRMT5 modulates the metabolic response to fasting signals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8870-8875.	3.3	70
31	Targeting MYC in cancer therapy: RNA processing offers new opportunities. BioEssays, 2016, 38, 266-275.	1.2	64
32	Chromatin dependencies in cancer and inflammation. Nature Reviews Molecular Cell Biology, 2018, 19, 245-261.	16.1	64
33	Contrasting expression patterns of coding and noncoding parts of the human genome upon oxidative stress. Scientific Reports, 2015, 5, 9737.	1.6	62
34	On WD40 proteins: Propelling our knowledge of transcriptional control?. Epigenetics, 2012, 7, 815-822.	1.3	61
35	Transcription and imprinting dynamics in developing postnatal male germline stem cells. Genes and Development, 2015, 29, 2312-2324.	2.7	61
36	Discovery of First-in-Class Protein Arginine Methyltransferase 5 (PRMT5) Degraders. Journal of Medicinal Chemistry, 2020, 63, 9977-9989.	2.9	58

#	Article	IF	CITATIONS
37	Arginine/lysine–methyl/methyl switches: biochemical role of histone arginine methylation in transcriptional regulation. Epigenomics, 2010, 2, 119-137.	1.0	53
38	Histone arginine methylation in cocaine action in the nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9623-9628.	3.3	52
39	METTL6 is a tRNA m ³ C methyltransferase that regulates pluripotency and tumor cell growth. Science Advances, 2020, 6, eaaz4551.	4.7	51
40	Influenza virus infection causes global RNAPII termination defects. Nature Structural and Molecular Biology, 2018, 25, 885-893.	3.6	48
41	Emi2 Is Essential for Mouse Spermatogenesis. Cell Reports, 2017, 20, 697-708.	2.9	45
42	Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications. Gut, 2023, 72, 736-748.	6.1	42
43	MBNL1 alternative splicing isoforms play opposing roles in cancer. Life Science Alliance, 2018, 1, e201800157.	1.3	41
44	PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK–ERK signaling. Nature Genetics, 2017, 49, 1354-1363.	9.4	39
45	Posttranslational Regulation of the Exon Skipping Machinery Controls Aberrant Splicing in Leukemia. Cancer Discovery, 2020, 10, 1388-1409.	7.7	37
46	The core and conserved role of MAL is homeostatic regulation of actin levels. Genes and Development, 2014, 28, 1048-1053.	2.7	34
47	Identification of Quinolinols as Activators of TEAD-Dependent Transcription. ACS Chemical Biology, 2019, 14, 2909-2921.	1.6	32
48	PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma. Nature Communications, 2021, 12, 4626.	5.8	31
49	HPV E6 proteins interact with specific PML isoforms and allow distinctions to be made between different POD structures. Oncogene, 2004, 23, 4662-4672.	2.6	30
50	Characterization of the histone methyltransferase PRDM9 using biochemical, biophysical and chemical biology techniques. Biochemical Journal, 2014, 461, 323-334.	1.7	30
51	Epigenetic Regulation of the PTEN–AKT–RAC1 Axis by G9a Is Critical for Tumor Growth in Alveolar Rhabdomyosarcoma. Cancer Research, 2019, 79, 2232-2243.	0.4	30
52	HPV-18 E6*I modulates HPV-18 full-length E6 functions in a cell cycle dependent manner. International Journal of Cancer, 2004, 110, 928-933.	2.3	29
53	Rapid, scalable assessment of SARS-CoV-2 cellular immunity by whole-blood PCR. Nature Biotechnology, 2022, 40, 1680-1689.	9.4	29
54	Multiplexed Analysis of Protein–Ligand Interactions by Fluorescence Anisotropy in a Microfluidic Platform. Analytical Chemistry, 2014, 86, 9901-9908.	3.2	28

#	Article	IF	CITATIONS
55	HNRNPM controls circRNA biogenesis and splicing fidelity to sustain cancer cell fitness. ELife, 2021, 10,	2.8	27
56	Modeling Cerebrovascular Pathophysiology in Amyloid- \hat{l}^2 Metabolism using Neural-Crest-Derived Smooth Muscle Cells. Cell Reports, 2014, 9, 391-401.	2.9	25
57	Cleavage of MAGI-1, a tight junction PDZ protein, by caspases is an important step for cell-cell detachment in apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 343-354.	2.2	24
58	Loss of maternal <i>Trim28</i> causes male-predominant early embryonic lethality. Genes and Development, 2017, 31, 12-17.	2.7	24
59	Discovery of a chemical probe for PRDM9. Nature Communications, 2019, 10, 5759.	5.8	24
60	The duality of PRDM proteins: epigenetic and structural perspectives. FEBS Journal, 2022, 289, 1256-1275.	2.2	24
61	miR-Sens—a retroviral dual-luciferase reporter to detect microRNA activity in primary cells. Rna, 2012, 18, 1091-1100.	1.6	23
62	Targeted inactivation and identification of targets of the Gli2a transcription factor in the zebrafish. Biology Open, 2013, 2, 1203-1213.	0.6	22
63	The KRAB-Zinc finger protein ZFP708 mediates epigenetic repression at RMER19B retrotransposons. Development (Cambridge), 2019, 146, .	1.2	22
64	PRDM15 is a key regulator of metabolism critical to sustain B-cell lymphomagenesis. Nature Communications, 2020, 11, 3520.	5.8	20
65	Chromatin association and regulation of rDNA transcription by the Ras-family protein RasL11a. EMBO Journal, 2010, 29, 1215-1224.	3.5	19
66	The Where and the How of PRMT5. Current Molecular Biology Reports, 2015, 1, 19-28.	0.8	19
67	Integrative RNA-omics Discovers <i>GNAS</i> Alternative Splicing as a Phenotypic Driver of Splicing Factor–Mutant Neoplasms. Cancer Discovery, 2022, 12, 836-855.	7.7	19
68	Pan-cancer pervasive upregulation of 3′ UTR splicing drives tumourigenesis. Nature Cell Biology, 2022, 24, 928-939.	4.6	18
69	Phenotype-Based Screens with Conformation-Specific Inhibitors Reveal p38 Gamma and Delta as Targets for HCC Polypharmacology. Molecular Cancer Therapeutics, 2019, 18, 1506-1519.	1.9	16
70	The metabolic sensor PASK is a histone 3 kinase that also regulates H3K4 methylation by associating with H3K4 MLL2 methyltransferase complex. Nucleic Acids Research, 2019, 47, 10086-10103.	6.5	15
71	Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome. Journal of the American Society of Nephrology: JASN, 2021, 32, 580-596.	3.0	15
72	Global translation during early development depends on the essential transcription factor PRDM10. Nature Communications, 2020, 11, 3603.	5.8	13

#	Article	IF	CITATIONS
73	PRDM15 loss of function links NOTCH and WNT/PCP signaling to patterning defects in holoprosencephaly. Science Advances, 2020, 6, eaax9852.	4.7	13
74	Discovery and characterisation of the automethylation properties of PRDM9. Biochemical Journal, 2017, 474, 971-982.	1.7	11
75	CDK2 regulates the NRF1/Ehmt1 axis during meiotic prophase I. Journal of Cell Biology, 2019, 218, 2896-2918.	2.3	10
76	The portrait of liver cancer is shaped by mitochondrial genetics. Cell Reports, 2022, 38, 110254.	2.9	10
77	Cancer synthetic vulnerabilities to protein arginine methyltransferase inhibitors. Current Opinion in Pharmacology, 2021, 59, 33-42.	1.7	8
78	circASXL1-1 regulates BAP1 deubiquitinase activity in leukemia. Haematologica, 2020, 105, e343-e348.	1.7	7
79	Hairless promotes PPARÎ 3 expression and is required for white adipogenesis. EMBO Reports, 2012, 13, 1012-1020.	2.0	6
80	Development of Potent Cellular and Humoral Immune Responses in Long-Term Hemodialysis Patients After 1273-mRNA SARS-CoV-2 Vaccination. Frontiers in Immunology, 2022, 13, 845882.	2.2	6
81	Splice-Switching Antisense Oligonucleotides as a Targeted Intrinsic Engineering Tool for Generating Armored Redirected T Cells. Nucleic Acid Therapeutics, 2021, 31, 145-154.	2.0	3
82	Welcome to the New Journal Epigenomes. Epigenomes, 2017, 1, 1.	0.8	2