David G Brooks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323535/publications.pdf Version: 2024-02-01

DAVID C. RROOKS

#	Article	IF	CITATIONS
1	Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity, 2022, 55, 324-340.e8.	6.6	179
2	Translational randomized phase II trial of cabozantinib in combination with nivolumab in advanced, recurrent, or metastatic endometrial cancer. , 2022, 10, e004233.		24
3	DC1s shield Tpex cells to bolster PD-1 blockade. Immunity, 2022, 55, 577-579.	6.6	1
4	Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy. Nature Immunology, 2022, 23, 1273-1283.	7.0	17
5	Opposing Roles of Type I Interferons in Cancer Immunity. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 167-198.	9.6	88
6	Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection. Immunity, 2021, 54, 526-541.e7.	6.6	25
7	DNA hypomethylating agents increase activation and cytolytic activity of CD8+ TÂcells. Molecular Cell, 2021, 81, 1469-1483.e8.	4.5	52
8	Prevention of CD8 T Cell Deletion during Chronic Viral Infection. Viruses, 2021, 13, 1189.	1.5	3
9	Pan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivity. Nature Communications, 2021, 12, 5137.	5.8	63
10	Dynamic CD4+ T cell heterogeneity defines subset-specific suppression and PD-L1-blockade-driven functional restoration in chronic infection. Nature Immunology, 2021, 22, 1524-1537.	7.0	26
11	In Response to Letter from Fregonara et al. 2019. Molecular Imaging and Biology, 2020, 22, 13-14.	1.3	2
12	A network of immune and microbial modifications underlies viral persistence in the gastrointestinal tract. Journal of Experimental Medicine, 2020, 217, .	4.2	6
13	18F-GE180, a radioligand for the TSPO protein: not ready for clinical trials in multiple sclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2242-2243.	3.3	4
14	Chronic virus infection drives CD8 T cell-mediated thymic destruction and impaired negative selection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5420-5429.	3.3	23
15	Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Seminars in Immunology, 2019, 43, 101277.	2.7	62
16	Validation of CyTOF Against Flow Cytometry for Immunological Studies and Monitoring of Human Cancer Clinical Trials. Frontiers in Oncology, 2019, 9, 415.	1.3	114
17	An interim report on the investigator-initiated phase 2 study of pembrolizumab immunological response evaluation (INSPIRE). , 2019, 7, 72.		38
18	Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell, 2019, 176, 610-624.e18.	13.5	241

DAVID G BROOKS

#	Article	IF	CITATIONS
19	High Constitutive Interleukin 10 Level Interferes With the Immune Response to Varicella-Zoster Virus in Elderly Recipients of Live Attenuated Zoster Vaccine. Journal of Infectious Diseases, 2019, 219, 1338-1346.	1.9	9
20	CCR4 expression on host T cells is a driver for alloreactive responses and lung rejection. JCI Insight, 2019, 4, .	2.3	2
21	CD8+ T Cell Priming in Established Chronic Viral Infection Preferentially Directs Differentiation of Memory-like Cells for Sustained Immunity. Immunity, 2018, 49, 678-694.e5.	6.6	100
22	CRACR2A-Mediated TCR Signaling Promotes Local Effector Th1 and Th17 Responses. Journal of Immunology, 2018, 201, 1174-1185.	0.4	18
23	Type I Interferon in Chronic Virus Infection and Cancer. Trends in Immunology, 2017, 38, 542-557.	2.9	344
24	A CD103+ Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity, 2017, 47, 974-989.e8.	6.6	50
25	Purging Exhausted Virus-Specific CD8 T Cell Phenotypes by Somatic Cell Reprogramming. AIDS Research and Human Retroviruses, 2017, 33, S-59-S-69.	0.5	1
26	Overcoming CD4 Th1 Cell Fate Restrictions to Sustain Antiviral CD8ÂT Cells and Control Persistent Virus Infection. Cell Reports, 2016, 16, 3286-3296.	2.9	79
27	Targeting type I interferon–mediated activation restores immune function in chronic HIV infection. Journal of Clinical Investigation, 2016, 127, 260-268.	3.9	153
28	Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence. PLoS Pathogens, 2016, 12, e1005356.	2.1	49
29	<scp>LKB</scp> 1 inhibition of <scp>NF</scp> â€î®B in B cells prevents TÂfollicular helper cell differentiation and germinal center formation. EMBO Reports, 2015, 16, 753-768.	2.0	22
30	Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell, 2015, 163, 1716-1729.	13.5	322
31	Suppression of FcÎ ³ -Receptor-Mediated Antibody Effector Function during Persistent Viral Infection. Immunity, 2015, 42, 379-390.	6.6	58
32	New insights into type I interferon and the immunopathogenesis of persistent viral infections. Current Opinion in Immunology, 2015, 34, 91-98.	2.4	37
33	Type I interferon suppresses de novo virus-specific CD4 Th1 immunity during an established persistent viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7409-7414.	3.3	87
34	Blockade of Chronic Type I Interferon Signaling to Control Persistent LCMV Infection. Science, 2013, 340, 202-207.	6.0	606
35	Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4904-12.	3.3	77

6.6 11

DAVID G BROOKS

#	Article	IF	CITATIONS
37	Decoding the complexity of type I interferon to treat persistent viral infections. Trends in Microbiology, 2013, 21, 634-640.	3.5	23
38	Sterol regulatory element–binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nature Immunology, 2013, 14, 489-499.	7.0	394
39	Networking at the Level of Host Immunity: Immune Cell Interactions during Persistent Viral Infections. Cell Host and Microbe, 2013, 13, 652-664.	5.1	79
40	Interfering with type I Interferon: A novel approach to purge persistent viral infection. Cell Cycle, 2013, 12, 2919-2920.	1.3	7
41	Emergence of Distinct Multiarmed Immunoregulatory Antigen-Presenting Cells during Persistent Viral Infection. Cell Host and Microbe, 2012, 11, 481-491.	5.1	51
42	Caveolin-1 Orchestrates TCR Synaptic Polarity, Signal Specificity, and Function in CD8 T Cells. Journal of Immunology, 2011, 187, 2993-3002.	0.4	47
43	Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. Journal of Experimental Medicine, 2011, 208, 987-999.	4.2	294
44	Translating insights from persistent LCMV infection into anti-HIV immunity. Immunologic Research, 2010, 48, 3-13.	1.3	21
45	Opposing positive and negative regulation of T cell activity during viral persistence. Current Opinion in Immunology, 2010, 22, 348-354.	2.4	21
46	IL-10 directly suppresses CD4 but not CD8 T cell effector and memory responses following acute viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3018-3023.	3.3	136
47	The Role of IL-10 in Regulating Immunity to Persistent Viral Infections. Current Topics in Microbiology and Immunology, 2010, 350, 39-65.	0.7	123
48	IL-10 induces aberrant deletion of dendritic cells by natural killer cells in the context of HIV infection. Journal of Clinical Investigation, 2010, 120, 1905-1913.	3.9	74
49	Therapeutic Memory T Cells Require Costimulation for Effective Clearance of a Persistent Viral Infection. Journal of Virology, 2009, 83, 8905-8915.	1.5	23
50	IL-21 Is Required to Control Chronic Viral Infection. Science, 2009, 324, 1569-1572.	6.0	501
51	Suppressing the suppressor. Blood, 2009, 114, 233-233.	0.6	0
52	IL-10 blockade facilitates DNA vaccine-induced T cell responses and enhances clearance of persistent virus infection. Journal of Experimental Medicine, 2008, 205, 533-541.	4.2	141
53	IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during persistent viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20428-20433.	3.3	186
54	Interleukin-15 but Not Interleukin-7 Abrogates Vaccine-Induced Decrease in Virus Level in Simian Immunodeficiency Virusmac251-Infected Macaques. Journal of Immunology, 2007, 178, 3492-3504.	0.4	47

DAVID G BROOKS

#	Article	IF	CITATIONS
55	Reply: Nigral degeneration and striatal dopaminergic dysfunction in idiopathic and parkin-linked Parkinson's disease. Movement Disorders, 2007, 22, 1522-1522.	2.2	0
56	Mapping and restriction of a dominant viral CD4+ T cell core epitope by both MHC class I and MHC class I and MHC class II. Virology, 2007, 363, 113-123.	1.1	32
57	Interleukin-10 determines viral clearance or persistence in vivo. Nature Medicine, 2006, 12, 1301-1309.	15.2	828
58	Rapid Expression of Human Immunodeficiency Virus following Activation of Latently Infected Cells. Journal of Virology, 2006, 80, 1599-1603.	1.5	28
59	Reprogramming of antiviral T cells prevents inactivation and restores T cell activity during persistent viral infection. Journal of Clinical Investigation, 2006, 116, 1675-1685.	3.9	107
60	Rapid Size Dependent Deletion of Foreign Gene Sequences Inserted into Attenuated HIV-1 upon Infection In Vivo: Implications for Vaccine Development. Current HIV Research, 2005, 3, 377-392.	0.2	4
61	Intrinsic Functional Dysregulation of CD4 T Cells Occurs Rapidly following Persistent Viral Infection. Journal of Virology, 2005, 79, 10514-10527.	1.5	200
62	CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8727-8732.	3.3	81
63	Impacts of Epitope Expression Kinetics and Class I Downregulation on the Antiviral Activity of Human Immunodeficiency Virus Type 1-Specific Cytotoxic T Lymphocytes. Journal of Virology, 2004, 78, 561-567.	1.5	34
64	Molecular Characterization, Reactivation, and Depletion of Latent HIV. Immunity, 2003, 19, 413-423.	6.6	184
65	HIV Type 1 Infection Alters Cytokine mRNA Expression in Thymus. AIDS Research and Human Retroviruses, 2003, 19, 1-12.	0.5	14
66	Identification of T cell-signaling pathways that stimulate latent HIV in primary cells. Proceedings of the United States of America, 2003, 100, 12955-12960.	3.3	97
67	Interleukin-7 Induces Expression of Latent Human Immunodeficiency Virus Type 1 with Minimal Effects on T-Cell Phenotype. Journal of Virology, 2002, 76, 13077-13082.	1.5	170
68	Effects of Prostratin on T-Cell Activation and Human Immunodeficiency Virus Latency. Journal of Virology, 2002, 76, 8118-8123.	1.5	205
69	Effect of Latent Human Immunodeficiency Virus Infection on Cell Surface Phenotype. Journal of Virology, 2002, 76, 1673-1681.	1.5	31
70	Generation of HIV latency during thymopoiesis. Nature Medicine, 2001, 7, 459-464.	15.2	165
71	Human Immunodeficiency Virus Type 1-Induced Hematopoietic Inhibition Is Independent of Productive Infection of Progenitor Cells In Vivo. Journal of Virology, 1999, 73, 9089-9097.	1.5	60