
Yaqing Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermodynamically Stable Orthorhombic $\hat{1}^3$ -CsPbI ₃ Thin Films for High-Performance Photovoltaics. Journal of the American Chemical Society, 2018, 140, 11716-11725.	6.6	308
2	Chiral Lead Halide Perovskite Nanowires for Second-Order Nonlinear Optics. Nano Letters, 2018, 18, 5411-5417.	4.5	212
3	Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes. Advanced Materials, 2019, 31, e1807981.	11.1	187
4	Optimization of Stable Quasi-Cubic FA _{<i>x</i>} MA _{1–<i>x</i>} Pbl ₃ Perovskite Structure for Solar Cells with Efficiency beyond 20%. ACS Energy Letters, 2017, 2, 802-806.	8.8	158
5	Chiral Perovskites: Promising Materials toward Nextâ€Generation Optoelectronics. Small, 2019, 15, e1902237.	5.2	137
6	Stable and Highâ€Efficiency Methylammoniumâ€Free Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905502.	11.1	131
7	A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquidâ€Dopants. Advanced Materials, 2017, 29, 1702157.	11.1	115
8	Pbl ₂ –HMPA Complex Pretreatment for Highly Reproducible and Efficient CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14380-14387.	6.6	107
9	Tuning the Fermi-level of TiO ₂ mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Nanoscale, 2016, 8, 16881-16885.	2.8	103
10	Coordinative integration of a metal-porphyrinic framework and TiO ₂ nanoparticles for the formation of composite photocatalysts with enhanced visible-light-driven photocatalytic activities. Journal of Materials Chemistry A, 2017, 5, 15380-15389.	5.2	91
11	A Corroleâ€Based Covalent Organic Framework Featuring Desymmetrized Topology. Angewandte Chemie - International Edition, 2020, 59, 4354-4359.	7.2	84
12	Robust Corrole-Based Metal–Organic Frameworks with Rare 9-Connected Zr/Hf-Oxo Clusters. Journal of the American Chemical Society, 2019, 141, 14443-14450.	6.6	83
13	An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy. Nanoscale, 2019, 11, 11709-11718.	2.8	79
14	Fabrication of a New Corrole-Based Covalent Organic Framework as a Highly Efficient and Selective Chemosensor for Heavy Metal Ions. Chemistry of Materials, 2020, 32, 2532-2540.	3.2	76
15	A lactam building block for efficient polymer solar cells. Chemical Communications, 2015, 51, 11830-11833.	2.2	69
16	Graphdiyne-hybridized N-doped TiO2 nanosheets for enhanced visible light photocatalytic activity. Journal of Materials Science, 2018, 53, 8921-8932.	1.7	44
17	Highâ€Mobility Hydrophobic Conjugated Polymer as Effective Interlayer for Airâ€Stable Efficient Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800232.	3.1	36
18	Preparation of Mono-Dispersed Polyurea-Urea Formaldehyde Double Layered Microcapsules. Polymer Bulletin, 2008, 60, 725-731.	1.7	35

#	Article	IF	CITATIONS
19	Construction of Pyridine-Based Chiral Ionic Covalent Organic Frameworks as a Heterogeneous Catalyst for Promoting Asymmetric Henry Reactions. Organic Letters, 2021, 23, 1748-1752.	2.4	34
20	Preparation of diverse flower-like ZnO nanoaggregates for dye-sensitized solar cells. RSC Advances, 2015, 5, 25215-25221.	1.7	32
21	Compositing Two-Dimensional Materials with TiO2 for Photocatalysis. Catalysts, 2018, 8, 590.	1.6	31
22	Construction of a flexible covalent organic framework based on triazine units with interesting photoluminescent properties for sensitive and selective detection of picric acid. RSC Advances, 2019, 9, 30937-30942.	1.7	31
23	Novel Synthesis and Characterization of Yellow Inorganic/Organic Composite Spheres for Electrophoretic Display. Industrial & Engineering Chemistry Research, 2009, 48, 1468-1475.	1.8	26
24	Doubly N-confused isophlorin: synthesis, structure and copper coordination. Chemical Communications, 2014, 50, 14593-14596.	2.2	26
25	Effect of the length of the alkyl chains in porphyrin meso-substituents on the performance of dye-sensitized solar cells. RSC Advances, 2014, 4, 8894.	1.7	24
26	Synthesis and characterization of novel porphyrin Schiff bases. Journal of the Serbian Chemical Society, 2008, 73, 1-6.	0.4	23
27	Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets. Nano Research, 2019, 12, 3129-3134.	5.8	23
28	A Porphyrin-Involved Benzene-1,3,5-Tricarboxamide Dendrimer (Por-BTA) as a Multifunctional Interface Material for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 14248-14257.	4.0	23
29	A detailed investigation on the performance of dye-sensitized solar cells based on reduced graphene oxide-doped TiO2 photoanode. Journal of Materials Science, 2017, 52, 8070-8083.	1.7	22
30	Basic ionic liquid as catalyst and surfactant: green synthesis of quinazolinone in aqueous media. RSC Advances, 2018, 8, 36769-36774.	1.7	21
31	Solvent induced enhancement of nonlinear optical response of graphdiyne. Chinese Chemical Letters, 2021, 32, 525-528.	4.8	21
32	Double-N doping: a new discovery about N-doped TiO ₂ applied in dye-sensitized solar cells. RSC Advances, 2014, 4, 16992-16998.	1.7	20
33	Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material. Nano Research, 2015, 8, 3830-3841.	5.8	20
34	Stepwise co-sensitization of two metal-based sensitizers: probing their competitive adsorption for improving the photovoltaic performance of dye-sensitized solar cells. RSC Advances, 2017, 7, 10494-10502.	1.7	19
35	Multiâ€functional Nanodrug Based on a Threeâ€dimensional Framework for Targeted Photoâ€chemo Synergetic Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001874.	3.9	19
36	Improved performance of dye-sensitized solar cells based on modified kaolin/PVDF-HFP composite gel electrolytes. RSC Advances, 2016, 6, 100079-100089.	1.7	18

#	Article	IF	CITATIONS
37	Organometallic Groupâ€11 (Cu ^{III} , Ag ^{III} , Au ^{III}) Complexes of a <i>trans</i> â€Doubly Nâ€Confused Porphyrin: An "Expanded Imidazole―Structural Motif. Chemistry - A European Journal, 2017, 23, 11375-11384.	1.7	18
38	How does HOTf/HFIP Cooperative System Catalyze the Ringâ€Opening Reaction of Cyclopropanes? A DFT Study. Asian Journal of Organic Chemistry, 2020, 9, 311-316.	1.3	18
39	Selectively Fluorinated Benzylammonium-Based Spacer Cation Enables Graded Quasi-2D Perovskites for Efficient and Stable Solar Cells. Chemistry of Materials, 2022, 34, 3346-3356.	3.2	18
40	Hexagonal mesoporous silica islands to enhance photovoltaic performance of planar junction perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1415-1420.	5.2	17
41	Metallocorrole-based porous organic polymers as a heterogeneous catalytic nanoplatform for efficient carbon dioxide conversion. Nano Research, 2022, 15, 1145-1152.	5.8	17
42	The tumor phototherapeutic application of nanoparticles constructed by the relationship between PTT/PDT efficiency and 2,6- and 3,5-substituted BODIPY derivatives. Journal of Materials Chemistry B, 2021, 9, 7461-7471.	2.9	16
43	Crystalline Covalent Organic Frameworks Based on Mixed Metallo- and Tetrahydroporphyrin Monomers for Use as Efficient Photocatalysts in Dye Pollutant Removal. Crystal Growth and Design, 2022, 22, 4745-4756.	1.4	16
44	Preparation of Novel Porphyrin Nanomaterials Based on the pH-Responsive Shape Evolution of Porphyrin Microspheres. Langmuir, 2015, 31, 4330-4340.	1.6	15
45	Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye. Scientific Reports, 2016, 6, 23061.	1.6	14
46	A novel amphiphilic fluorescent probe BODIPY– <i>O</i> -CMC–cRGD as a biomarker and nanoparticle vector. RSC Advances, 2018, 8, 20087-20094.	1.7	14
47	D–A copolymers containing lactam moieties for polymer solar cells. Polymer Chemistry, 2015, 6, 7373-7376.	1.9	13
48	Healable terpyridine-based supramolecular gels and the luminescent properties of the rare earth metal complex. New Journal of Chemistry, 2017, 41, 15173-15179.	1.4	13
49	Enhanced photovoltaic performance of dye-sensitized solar cells (DSSCs) using graphdiyne-doped TiO2 photoanode. Journal of Materials Science, 2019, 54, 4893-4904.	1.7	13
50	Corroles programmed for regioselective cycloaddition chemistry — synthesis of a bisadduct with C60-fullerene. Journal of Porphyrins and Phthalocyanines, 2012, 16, 556-563.	0.4	12
51	A New Route to Indazolone via Amidation Reaction of o-Carboxyazobenzene. Organic Letters, 2012, 14, 479-481.	2.4	12
52	Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells. Frontiers of Chemical Science and Engineering, 2017, 11, 395-404.	2.3	10
53	Synthesis of corrole–fullerene dyads via [4 + 2] cycloaddition reaction. RSC Advances, 2014, 4, 40758-40762.	1.7	9
54	Porphyrins as Dipolarophiles in 1,3-Dipolar Cycloaddition Reactions with Nitrile Oxide. Synlett, 2005, 2005, 1030-1032.	1.0	8

#	Article	IF	CITATIONS
55	Rigid triarylamine donor–Ĩ€â€"acceptor porphyrin dyes and their application in dye-sensitized solar cells. RSC Advances, 2015, 5, 41193-41202.	1.7	8
56	Application-oriented computational studies on a series of D–π–A structured porphyrin sensitizers with different electron-donor groups. Physical Chemistry Chemical Physics, 2015, 17, 30624-30631.	1.3	8
57	Encapsulation of modified pigment yellow 110 (PY110) for electrophoretic display. Journal of Materials Research, 2016, 31, 2261-2267.	1.2	8
58	The self-assembly of monosubstituted BODIPY and HFBI-RGD. RSC Advances, 2018, 8, 21472-21479.	1.7	8
59	Blue nanocomposites coated with an ionic liquid polymer for electrophoretic displays. RSC Advances, 2021, 11, 20760-20768.	1.7	8
60	Ultraviolet Filtration Passivator for Stable High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 19459-19468.	4.0	8
61	Chiral Perovskite: Chiral Perovskites: Promising Materials toward Nextâ€Generation Optoelectronics (Small 39/2019). Small, 2019, 15, 1970209.	5.2	7
62	Surface ligand engineering involving fluorophenethyl ammonium for stable and strong emission CsPbBr ₃ quantum dots and high-performance QLEDs. Journal of Materials Chemistry C, 2022, 10, 5849-5855.	2.7	7
63	Regioselective synthesis of novel spiroheterocyclic framework via the 1,3-dipolar cycloaddition. Journal of Heterocyclic Chemistry, 2006, 43, 75-80.	1.4	6
64	N-doped TiO2 applied in low-temperature-based dye-sensitized solar cells. Research on Chemical Intermediates, 2016, 42, 6705-6718.	1.3	6
65	A Corroleâ€Based Covalent Organic Framework Featuring Desymmetrized Topology. Angewandte Chemie, 2020, 132, 4384-4389.	1.6	6
66	Study of quasi-solid electrolyte in dye-sensitized solar cells using surfactant as pore-forming materials in TiO2 photoelectrodes. Journal of Solid State Electrochemistry, 2017, 21, 715-724.	1.2	5
67	Introduction of an isoxazoline unit to the β-position of porphyrin via regioselective 1,3-dipolar cycloaddition reaction. Beilstein Journal of Organic Chemistry, 2019, 15, 1434-1440.	1.3	5
68	The photodynamic/photothermal synergistic therapeutic effect of BODIPY-I-35 liposomes with urea. Photodiagnosis and Photodynamic Therapy, 2022, 37, 102723.	1.3	5
69	In Situ Graded Passivation via Porphyrin Derivative with Enhanced Photovoltage and Fill Factor in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	5
70	Effects of interfacial adsorption configurations on dye-sensitized solar cell performance at the stoichiometric and defective TiO ₂ anatase (101) surfaces: a theoretical investigation. Physical Chemistry Chemical Physics, 2020, 22, 4508-4515.	1.3	4
71	Area-Scalable Zn ₂ SnO ₄ Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Modules. ACS Applied Materials & Interfaces, 2022, 14, 23297-23306.	4.0	4
72	Effects of substituent and solvent on the Sonogashira coupling reaction of Î ² -bromoporphyrin. Research on Chemical Intermediates, 2014, 40, 1517-1524.	1.3	3

#	Article	IF	CITATIONS
73	Studies on selective β/β′ bromination of π-extended porphyrins and subsequent coupling reactions. Research on Chemical Intermediates, 2014, 40, 1415-1423.	1.3	3
74	Influence of the number of phenylethynyl units present in porphyrin sensitizer on its light harvesting and cell performance. Research on Chemical Intermediates, 2015, 41, 8713-8724.	1.3	3
75	Synthesis, spectroscopic and crystallographic analysis of the Zn-complex of a di(β,β′-sulfoleno)pyrrin: model for Zn-complexes of bilirubin and of phylloxanthobilins. Monatshefte Für Chemie, 2016, 147, 1031-1036.	0.9	3
76	Synthesis and Xâ€ray structure of new spiroâ€imidazo[2,1â€ <i>b</i>]thiazole. Journal of Heterocyclic Chemistry, 1999, 36, 1307-1310.	1.4	2
77	Encapsulation of perovskite quantum dots into a Ln ^{III} -incorporating polymer matrix to achieve white light emission. New Journal of Chemistry, 2022, 46, 6307-6313.	1.4	2
78	High-Mobility Hydrophobic Conjugated Polymer as Effective Interlayer for Air-Stable Efficient Perovskite Solar Cells (Solar RRL 1â^•2019). Solar Rrl, 2019, 3, 1970015.	3.1	1
79	Role of the Backbone when Optimizing Functional Groups─A Theoretical Study Based on an Improved Inverse-Design Approach. Journal of Physical Chemistry A, 2022, 126, 1289-1299.	1.1	1
80	Synthesis of meso-coumarin-substituted porphyrins. , 2011, , .		0
81	Preparation and Characterization of Coloured Polymer Particles for Electronic Ink. Polymers and Polymer Composites, 2017, 25, 161-166.	1.0	0
82	Fluorine-Mediated Benzothiadiazole Derivatives for Second-Order Nonlinear Optics. Transactions of Tianjin University, 2019, 25, 603-610.	3.3	0
83	Single-Crystalline Nanosheets of Hybrid Perovskite Fabricated by a Vapor-Solution Sequential Deposition Route. Journal of Nanoscience and Nanotechnology, 2019, 19, 3669-3672.	0.9	0