

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323323/publications.pdf Version: 2024-02-01

RINLI

#	Article	IF	CITATIONS
1	Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 2018, 109, 260-267.	6.2	249
2	Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids, 2016, 61, 662-671.	10.7	223
3	High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties. Ultrasonics Sonochemistry, 2016, 31, 302-309.	8.2	193
4	Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin. RSC Advances, 2015, 5, 13891-13900.	3.6	160
5	Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Research International, 2012, 46, 270-278.	6.2	151
6	Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Research International, 2016, 89, 399-407.	6.2	141
7	Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface. Food Chemistry, 2018, 252, 181-188.	8.2	129
8	Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T 10.7	f 50 462 Td 118
9	Effects of thermal sterilization on soy protein isolate/polyphenol complexes: Aspects of structure, in vitro digestibility and antioxidant activity. Food Research International, 2018, 112, 284-290.	6.2	110

10	Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology: Effect of ionic strength and charge density of polysaccharide. Food Hydrocolloids, 2017, 73, 41-50.	10.7	101
11	Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior. Food Hydrocolloids, 2019, 88, 180-189.	10.7	101
12	Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids and Surfaces B: Biointerfaces, 2014, 116, 432-438.	5.0	99
13	Ovalbumin-chitosan complex coacervation: Phase behavior, thermodynamic and rheological properties. Food Hydrocolloids, 2016, 61, 895-902.	10.7	92
14	Bulk, Foam, and Interfacial Properties of Tannic Acid/Sodium Caseinate Nanocomplexes. Journal of Agricultural and Food Chemistry, 2018, 66, 6832-6839.	5.2	87
15	Construction of pH-sensitive lysozyme/pectin nanogel for tumor methotrexate delivery. Colloids and Surfaces B: Biointerfaces, 2015, 126, 459-466.	5.0	85
16	Preparation and characterization of heterogeneous deacetylated konjac glucomannan. Food Hydrocolloids, 2014, 40, 9-15.	10.7	82
17	Ovalbumin-carboxymethylcellulose complex coacervates stabilized high internal phase emulsions: Comparison of the effects of pH and polysaccharide charge density. Food Hydrocolloids, 2020, 98, 105282.	10.7	82
18	Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends in Food Science and Technology, 2021, 110, 573-583.	15.1	82

2

#	Article	IF	CITATIONS
19	Foams Stabilized by β-Lactoglobulin Amyloid Fibrils: Effect of pH. Journal of Agricultural and Food Chemistry, 2017, 65, 10658-10665.	5.2	79
20	Gelatin-Based Nanocomplex-Stabilized Pickering Emulsions: Regulating Droplet Size and Wettability through Assembly with Glucomannan. Journal of Agricultural and Food Chemistry, 2017, 65, 1401-1409.	5.2	78
21	Characteristics of the interaction mechanism between tannic acid and sodium caseinate using multispectroscopic and thermodynamics methods. Food Hydrocolloids, 2018, 75, 81-87.	10.7	78
22	Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydrate Polymers, 2020, 249, 116874.	10.2	77
23	Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2015, 126, 288-296.	5.0	76
24	Identification of molecular driving forces involved in the gelation of konjac glucomannan: Effect of degree of deacetylation on hydrophobic association. Carbohydrate Polymers, 2011, 86, 865-871.	10.2	74
25	Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions. Food Hydrocolloids, 2019, 97, 105180.	10.7	74
26	Dietary <scp>l</scp> -tryptophan alleviated LPS-induced intestinal barrier injury by regulating tight junctions in a Caco-2 cell monolayer model. Food and Function, 2019, 10, 2390-2398.	4.6	69
27	Engineering Multifunctional Films Based on Metal-Phenolic Networks for Rational pH-Responsive Delivery and Cell Imaging. ACS Biomaterials Science and Engineering, 2016, 2, 317-325.	5.2	68
28	Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan. Food Chemistry, 2020, 331, 127108.	8.2	68
29	Partial removal of acetyl groups in konjac glucomannan significantly improved the rheological properties and texture of konjac glucomannan and ^{ĵe} -carrageenan blends. International Journal of Biological Macromolecules, 2019, 123, 1165-1171.	7.5	67
30	Foaming and surface properties of gliadin nanoparticles: Influence of pH and heating temperature. Food Hydrocolloids, 2018, 77, 107-116.	10.7	65
31	Reduction of the Water Wettability of Cellulose Film through Controlled Heterogeneous Modification. ACS Applied Materials & Interfaces, 2014, 6, 5726-5734.	8.0	64
32	Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion. Food Hydrocolloids, 2019, 97, 105214.	10.7	64
33	Application of micronized konjac gel for fat analogue in mayonnaise. Food Hydrocolloids, 2014, 35, 375-382.	10.7	62
34	Functional properties of ovalbumin glycosylated with carboxymethyl cellulose of different substitution degree. Food Hydrocolloids, 2014, 40, 1-8.	10.7	62
35	Self-assembled zein–sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter. Journal of Materials Chemistry B, 2015, 3, 3242-3253.	5.8	62
36	Adsorption and Distribution of Edible Gliadin Nanoparticles at the Air/Water Interface. Journal of Agricultural and Food Chemistry, 2017, 65, 2454-2460.	5.2	62

#	Article	IF	CITATIONS
37	Concentrated O/W Pickering emulsions stabilized by soy protein/cellulose nanofibrils: Influence of pH on the emulsification performance. Food Hydrocolloids, 2020, 108, 106025.	10.7	61
38	Towards understanding the interaction of β-lactoglobulin with capsaicin: Multi-spectroscopic, thermodynamic, molecular docking and molecular dynamics simulation approaches. Food Hydrocolloids, 2020, 105, 105767.	10.7	59
39	Supramolecular design of coordination bonding architecture on zein nanoparticles for pH-responsive anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1224-1233.	5.0	58
40	In Situ Interfacial Conjugation of Chitosan with Cinnamaldehyde during Homogenization Improves the Formation and Stability of Chitosan-Stabilized Emulsions. Langmuir, 2017, 33, 14608-14617.	3.5	57
41	Characterization and interfacial rheological properties of nanoparticles prepared by heat treatment of ovalbumin-carboxymethylcellulose complexes. Food Hydrocolloids, 2018, 82, 355-362.	10.7	57
42	Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin–carboxymethylcellulose nanocomplexes and nanoparticles. Food and Function, 2018, 9, 3788-3797.	4.6	57
43	Enhancement of physicochemical properties of whey protein-stabilized nanoemulsions by interfacial cross-linking using cinnamaldehyde. Food Hydrocolloids, 2018, 77, 976-985.	10.7	56
44	Edible foam based on pickering effect of bacterial cellulose nanofibrils and soy protein isolates featuring interfacial network stabilization. Food Hydrocolloids, 2020, 100, 105440.	10.7	56
45	Influence of pH and cinnamaldehyde on the physical stability and lipolysis of whey protein isolate-stabilized emulsions. Food Hydrocolloids, 2017, 69, 103-110.	10.7	54
46	Surface modification of microcrystalline cellulose: Physicochemical characterization and applications in the Stabilization of Pickering emulsions. International Journal of Biological Macromolecules, 2019, 132, 1176-1184.	7.5	52
47	Impact of pH on the interaction between soybean protein isolate and oxidized bacterial cellulose at oil-water interface: Dilatational rheological and emulsifying properties. Food Hydrocolloids, 2021, 115, 106609.	10.7	52
48	Water-insoluble dietary fibers from bamboo shoot used as plant food particles for the stabilization of O/W Pickering emulsion. Food Chemistry, 2020, 310, 125925.	8.2	48
49	Designing self-nanoemulsifying delivery systems to enhance bioaccessibility of hydrophobic bioactives (nobiletin): Influence ofÂhydroxypropyl methylcellulose and thermal processing. Food Hydrocolloids, 2015, 51, 395-404.	10.7	47
50	Effect of freeze-drying on interaction and functional properties of pea protein isolate/soy soluble polysaccharides complexes. Journal of Molecular Liquids, 2019, 285, 658-667.	4.9	46
51	Tuning the molecular interactions between gliadin and tannic acid to prepare Pickering stabilizers with improved emulsifying properties. Food Hydrocolloids, 2021, 111, 106179.	10.7	46
52	Fabrication of nanoemulsion-filled alginate hydrogel to control the digestion behavior of hydrophobic nobiletin. LWT - Food Science and Technology, 2017, 82, 260-267.	5.2	45
53	Improving the emulsifying property of gliadin nanoparticles as stabilizer of Pickering emulsions: Modification with sodium carboxymethyl cellulose. Food Hydrocolloids, 2020, 107, 105936.	10.7	45
54	The influence of amylose and amylopectin on water retention capacity and texture properties of frozen-thawed konjac glucomannan gel. Food Hydrocolloids, 2021, 113, 106521.	10.7	45

#	Article	IF	CITATIONS
55	Degraded konjac glucomannan by γ-ray irradiation assisted with ethanol: Preparation and characterization. Food Hydrocolloids, 2014, 36, 85-92.	10.7	44
56	Properties of soybean protein isolate/curdlan based emulsion gel for fat analogue: Comparison with pork backfat. International Journal of Biological Macromolecules, 2022, 206, 481-488.	7.5	44
57	pH-Degradable antioxidant nanoparticles based on hydrogen-bonded tannic acid assembly. RSC Advances, 2016, 6, 31374-31385.	3.6	43
58	Health benefits of konjac glucomannan with special focus on diabetes. Bioactive Carbohydrates and Dietary Fibre, 2015, 5, 179-187.	2.7	42
59	Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate. Colloids and Surfaces B: Biointerfaces, 2016, 145, 643-652.	5.0	42
60	One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using a Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. Journal of Agricultural and Food Chemistry, 2020, 68, 5412-5425.	5.2	42
61	Effect of CMC degree of substitution and gliadin/CMC ratio on surface rheology and foaming behavior of gliadin/CMC nanoparticles. Food Hydrocolloids, 2020, 107, 105955.	10.7	41
62	The influence of deacetylation degree of konjac glucomannan on rheological and gel properties of konjac glucomannan/κ-carrageenan mixed system. Food Hydrocolloids, 2020, 101, 105523.	10.7	40
63	Improved foaming properties and interfacial observation of sodium caseinate-based complexes: Effect of carboxymethyl cellulose. Food Hydrocolloids, 2020, 105, 105758.	10.7	40
64	Water-insoluble dietary-fibers from Flammulina velutiper used as edible stabilizers for oil-in-water Pickering emulsions. Food Hydrocolloids, 2020, 101, 105519.	10.7	39
65	Facile in situ synthesis of silver nanoparticles on tannic acid/zein electrospun membranes and their antibacterial, catalytic and antioxidant activities. Food Chemistry, 2020, 330, 127172.	8.2	39
66	Foaming Properties and Linear and Nonlinear Surface Dilatational Rheology of Sodium Caseinate, Tannin Acid, and Octenyl Succinate Starch Ternary Complex. Journal of Agricultural and Food Chemistry, 2019, 67, 2340-2349.	5.2	37
67	Anthocyanins-loaded nanocomplexes comprising casein and carboxymethyl cellulose: stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids, 2022, 122, 107073.	10.7	36
68	Effects of the interaction between bacterial cellulose and soy protein isolate on the oil-water interface on the digestion of the Pickering emulsions. Food Hydrocolloids, 2022, 126, 107480.	10.7	36
69	Impact of whey protein complexation with phytic acid on its emulsification and stabilization properties. Food Hydrocolloids, 2019, 87, 90-96.	10.7	35
70	Complexation between sodium caseinate and gallic acid: Effects on foam properties and interfacial properties of foam. Food Hydrocolloids, 2020, 99, 105365.	10.7	35
71	Enhancement of physical stability and bioaccessibility of tangeretin by soy protein isolate addition. Food Chemistry, 2017, 221, 760-770.	8.2	34
72	Physicochemical properties and interfacial dilatational rheological behavior at air-water interface of high intensity ultrasound modified ovalbumin: Effect of ionic strength. Food Hydrocolloids, 2019, 97, 105210.	10.7	34

#	Article	IF	CITATIONS
73	Effect of surface charge density of bacterial cellulose nanofibrils on the rheology property of O/W Pickering emulsions. Food Hydrocolloids, 2021, 120, 106944.	10.7	34
74	Novel stable pickering emulsion based solid foams efficiently stabilized by microcrystalline cellulose/chitosan complex particles. Food Hydrocolloids, 2020, 108, 106044.	10.7	33
75	<i>In vitro</i> gastric emptying characteristics of konjac glucomannan with different viscosity and its effects on appetite regulation. Food and Function, 2020, 11, 7596-7610.	4.6	31
76	Vacuum-assisted layer-by-layer electrospun membranes: antibacterial and antioxidative applications. RSC Advances, 2014, 4, 54517-54524.	3.6	30
77	Multiple steps and critical behaviors of the binding of tannic acid to wheat starch: Effect of the concentration of wheat starch and the mass ratio of tannic acid to wheat starch. Food Hydrocolloids, 2019, 94, 174-182.	10.7	30
78	Combining surface dilatational rheology and quantitative proteomics as a tool for understanding microstructures of air/water interfaces stabilized by sodium caseinate/tannic acid complex. Food Hydrocolloids, 2020, 102, 105627.	10.7	30
79	Konjac Glucomannan (KGM), Deacetylated KGM (Da-KGM), and Degraded KGM Derivatives: A Special Focus on Colloidal Nutrition. Journal of Agricultural and Food Chemistry, 2021, 69, 12921-12932.	5.2	30
80	Overview of foam system: Natural material-based foam, stabilization, characterization, and applications. Food Hydrocolloids, 2022, 125, 107435.	10.7	30
81	Foaming and surface rheological behaviors of gliadin particles: Effect of solvent and concentration of gliadin stock solution. Food Hydrocolloids, 2020, 106, 105868.	10.7	29
82	Microstructural, rheological, and antibacterial properties of cross-linked chitosan emulgels. RSC Advances, 2015, 5, 100114-100122.	3.6	28
83	Thermally induced gelation behavior and fractal analysis of ovalbumin-carboxymethylcellulose electrostatic complexes. Food Hydrocolloids, 2019, 91, 214-223.	10.7	26
84	O/W Pickering Emulsion Templated Organo-hydrogels with Enhanced Mechanical Strength and Energy Storage Capacity. ACS Applied Bio Materials, 2019, 2, 480-487.	4.6	26
85	An efficient and simple approach for the controlled preparation of partially degraded konjac glucomannan. Food Hydrocolloids, 2020, 108, 106017.	10.7	26
86	Fabrication of processable and edible high internal phase Pickering emulsions stabilized with gliadin/sodium carboxymethyl cellulose colloid particles. Food Hydrocolloids, 2022, 128, 107571.	10.7	26
87	Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant: A bioinspired oxygen protection strategy. Carbohydrate Polymers, 2020, 229, 115395.	10.2	25
88	Biopolymer Additives Enhance Tangeretin Bioavailability in Emulsion-Based Delivery Systems: An <i>In Vitro</i> and In <i>Vivo</i> Study. Journal of Agricultural and Food Chemistry, 2021, 69, 730-740.	5.2	24
89	Comparative Quantitative Phosphoproteomic Analysis of the Chicken Egg during Incubation Based on Tandem Mass Tag Labeling. Journal of Agricultural and Food Chemistry, 2019, 67, 13353-13361.	5.2	23
90	Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chemistry, 2022, 384, 132589.	8.2	23

#	Article	IF	CITATIONS
91	Preparation and characterization of a novel pH-response dietary fiber: Chitosan-coated konjac glucomannan. Carbohydrate Polymers, 2015, 117, 1-10.	10.2	22
92	Comparative studies of konjac flours extracted from Amorphophallus guripingensis and Amorphophallus rivirei: Based on chemical analysis and rheology. Food Hydrocolloids, 2016, 57, 209-216.	10.7	22
93	Adsorption of microgel aggregates formed by assembly of gliadin nanoparticles and a β-lactoglobulin fibril-peptide mixture at the air/water interface: Surface morphology and foaming behavior. Food Hydrocolloids, 2022, 122, 107039.	10.7	22
94	Ultrasonic Degradation of Konjac Glucomannan and the Effect of Freezing Combined with Alkali Treatment on Their Rheological Profiles. Molecules, 2019, 24, 1860.	3.8	21
95	Effects of Differences in Resistant Starch Content of Rice on Intestinal Microbial Composition. Journal of Agricultural and Food Chemistry, 2021, 69, 8017-8027.	5.2	21
96	Preparation of thermo-reversible eugenol-loaded emulgel for refrigerated meat preservation. Food Hydrocolloids, 2018, 79, 235-242.	10.7	20
97	Engineering Multifunctional Coatings on Nanoparticles Based on Oxidative Coupling Assembly of Polyphenols for Stimuli-Responsive Drug Delivery. Journal of Agricultural and Food Chemistry, 2018, 66, 6897-6905.	5.2	20
98	Versatile Biosensing Toolkit Using an Electronic Particle Counter. Analytical Chemistry, 2021, 93, 6178-6187.	6.5	20
99	Carboxymethylpachymaran entrapped plant-based hollow microcapsules for delivery and stabilization of β-galactosidase. Food and Function, 2019, 10, 4782-4791.	4.6	19
100	Effects of Rice with Different Amounts of Resistant Starch on Mice Fed a High-Fat Diet: Attenuation of Adipose Weight Gain. Journal of Agricultural and Food Chemistry, 2020, 68, 13046-13055.	5.2	19
101	Carboxymethylpachymaran/alginate gel entrapping of natural pollen capsules for the encapsulation, protection and delivery of probiotics with enhanced viability. Food Hydrocolloids, 2021, 120, 106855.	10.7	19
102	Quantitative Comparative Integrated Proteomic and Phosphoproteomic Analysis of Chicken Egg Yolk Proteins under Diverse Storage Temperatures. Journal of Agricultural and Food Chemistry, 2020, 68, 1157-1167.	5.2	18
103	Oleogel Films Through the Pickering Effect of Bacterial Cellulose Nanofibrils Featuring Interfacial Network Stabilization. Journal of Agricultural and Food Chemistry, 2020, 68, 9150-9157.	5.2	18
104	Microencapsulation of Eugenol Through Gelatin-Based Emulgel for Preservation of Refrigerated Meat. Food and Bioprocess Technology, 2020, 13, 1621-1632.	4.7	18
105	Development and characterization of edible plant-based fibers using a wet-spinning technique. Food Hydrocolloids, 2022, 133, 107965.	10.7	18
106	One step procedure for desalting salty egg white and preparing fat analogue and its application in mayonnaise. Food Hydrocolloids, 2015, 45, 317-326.	10.7	17
107	Ca2+-induced whey protein emulgels for the encapsulation of crystalline nobiletin: Effect of nobiletin crystals on the viscoelasticity. Food Hydrocolloids, 2019, 94, 57-62.	10.7	17
108	Structural modification of whey protein isolate by cinnamaldehyde and stabilization effect on β-carotene-loaded emulsions and emulsion gels. Food Chemistry, 2022, 366, 130602.	8.2	17

#	Article	IF	CITATIONS
109	Structural and rheology properties of pea protein isolateâ€stabilised emulsion gel: Effect of crosslinking with transglutaminase. International Journal of Food Science and Technology, 2022, 57, 974-982.	2.7	17
110	Tailoring of structured hydroxypropyl methylcellulose-stabilized emulsions for encapsulation of nobiletin: modification of the oil and aqueous phases. Food and Function, 2018, 9, 3657-3664.	4.6	16
111	Controllable Viscoelastic Properties of Whey Protein-Based Emulsion Gels by Combined Cross-Linking with Calcium Ions and Cinnamaldehyde. ACS Applied Bio Materials, 2019, 2, 311-320.	4.6	16
112	Carboxymethylpachymaran-zein coated plant microcapsules-based Î ² -galactosidase encapsulation system for long-term effective delivery. Food Research International, 2020, 128, 108867.	6.2	16
113	Influence of pH on property and lipolysis behavior of cinnamaldehyde conjugated chitosan-stabilized emulsions. International Journal of Biological Macromolecules, 2020, 161, 587-595.	7.5	16
114	Enhancement of foam stability parallel with foamability of the foam stabilized by sodium caseinate-based complex: Octenyl succinate starch acting a dual role. Food Hydrocolloids, 2021, 113, 106479.	10.7	16
115	Konjac Oligosaccharides Modulate the Gut Environment and Promote Bone Health in Calcium-Deficient Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 4412-4422.	5.2	16
116	Impact of plant extract on the gastrointestinal fate of nutraceutical-loaded nanoemulsions: phytic acid inhibits lipid digestion but enhances curcumin bioaccessibility. Food and Function, 2019, 10, 3344-3355.	4.6	15
117	Plant exine capsules based encapsulation strategy: A high loading and long-term effective delivery system for nobiletin. Food Research International, 2020, 127, 108691.	6.2	15
118	Designable Carboxymethylpachymaran/Metal Ion Architecture on Sunflower Sporopollenin Exine Capsules as Delivery Vehicles for Bioactive Macromolecules. Journal of Agricultural and Food Chemistry, 2020, 68, 13990-14000.	5.2	15
119	Cutoff Ostwald ripening stability of eugenol-in-water emulsion by co-stabilization method and antibacterial activity evaluation. Food Hydrocolloids, 2020, 107, 105925.	10.7	15
120	Tuning of Molecular Interactions between Zein and Tannic Acid to Modify Sunflower Sporopollenin Exine Capsules: Enhanced Stability and Targeted Delivery of Bioactive Macromolecules. ACS Applied Bio Materials, 2021, 4, 2686-2695.	4.6	15
121	Superhydrophobic modification of cellulose film through light curing polyfluoro resin in situ. Cellulose, 2018, 25, 1617-1623.	4.9	14
122	Nanoparticle Encapsulation Strategy: Leveraging Plant Exine Capsules Used as Secondary Capping for Oral Delivery. Journal of Agricultural and Food Chemistry, 2019, 67, 8168-8176.	5.2	14
123	Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils. LWT - Food Science and Technology, 2022, 154, 112605.	5.2	14
124	Engineering functional alginate beads for encapsulation of Pickering emulsions stabilized byÂcolloidal particles. RSC Advances, 2016, 6, 101267-101276.	3.6	13
125	Leveraging plant exine capsules as pH-responsive delivery vehicles for hydrophobic nutraceutical encapsulation. Food and Function, 2018, 9, 5436-5442.	4.6	13
126	Desalination of salted duck egg white assisted by gelatin: Foaming and interface properties of the mixed system. Food Hydrocolloids, 2022, 124, 107260.	10.7	13

#	Article	IF	CITATIONS
127	Konjac oligosaccharides attenuate DSS-induced ulcerative colitis in mice: mechanistic insights. Food and Function, 2022, 13, 5626-5639.	4.6	13
128	Fabrication of gastric floating controlled release tablet based on konjac glucomannan. Food Research International, 2015, 72, 47-53.	6.2	12
129	Coordinationâ€Driven Metalâ€Polyphenolic Nanoparticles toward Effective Anticancer Therapy. Advanced Healthcare Materials, 2022, 11, .	7.6	12
130	An innovative konjac glucomannan/ <scp>κ arrageenan</scp> mixed tensile gel. Journal of the Science of Food and Agriculture, 2021, 101, 5067-5074.	3.5	11
131	Oligosaccharides act as the high efficiency stabilizer for β-galactosidase under heat treatment. International Journal of Biological Macromolecules, 2019, 137, 69-76.	7.5	10
132	A novel strategy to maintain the long-term viscosity stability of konjac glucomannan hydrosol by using zinc ion. Food Hydrocolloids, 2020, 108, 106000.	10.7	10
133	Fabrication and characterization of Pickering emulsions stabilized by desalted duck egg white nanogels and sodium alginate. Journal of the Science of Food and Agriculture, 2022, 102, 949-956.	3.5	10
134	Enhanced stability and bioaccessibility of nobiletin in whey protein/cinnamaldehyde-stabilized microcapsules and application in yogurt. Food Structure, 2021, 30, 100217.	4.5	9
135	Improvement of the solubility and emulsification of rice protein isolate by the <scp>pH</scp> shift treatment. International Journal of Food Science and Technology, 2023, 58, 355-366.	2.7	9
136	Development of Salt- and Gastric-Resistant Whey Protein Isolate Stabilized Emulsions in the Presence of Cinnamaldehyde and Application in Salad Dressing. Foods, 2021, 10, 1868.	4.3	8
137	Influence of solvent polarity of ethonal/water binary solvent on the structural, emulsifying, interfacial rheology properties of gliadin nanoparticles. Journal of Molecular Liquids, 2021, 344, 117976.	4.9	8
138	Pickering Emulsion Stabilized by Metal-Phenolic Architectures: A Straightforward In Situ Assembly Strategy. Journal of Agricultural and Food Chemistry, 2021, 69, 11709-11719.	5.2	7
139	Immunomodulatory activity of <i>Senegalia macrostachya</i> (Reichenb. ex DC.) Kyal. & Boatwr seed polysaccharide fraction through the activation of the MAPK signaling pathway in RAW264.7 macrophages. Food and Function, 2022, 13, 4664-4677.	4.6	7
140	Ultrasound-based one-step fabrication of nobiletin particle: A facile stabilization strategy. Food Chemistry, 2022, 369, 130896.	8.2	6
141	Fabrication of nanoemulsion delivery system with high bioaccessibility of carotenoids from <i>Lycium barbarum</i> by spontaneous emulsification. Food Science and Nutrition, 2022, 10, 2582-2589.	3.4	6
142	Correlations between sol viscosity of the partially degraded konjac glucomannan and appetite response of rats. Food Hydrocolloids for Health, 2021, 1, 100026.	3.9	5
143	Development of multi-layered gastric floating tablets based on konjac glucomannan: a modified calcium supplement with enhanced bioavailability. Food and Function, 2019, 10, 6429-6437.	4.6	4
144	Sodium caseinate reduces the swelling of konjac flour: A further examination. Food Hydrocolloids, 2021, 120, 106923.	10.7	4

#	Article	IF	CITATIONS
145	Evaluation of the effect of prebiotic sesame candies on loperamide-induced constipation in mice. Food and Function, 2022, 13, 5690-5700.	4.6	4
146	Microencapsulation of astaxanthin based on emulsion solvent evaporation and subsequent spray drying. Journal of Food Science, 2022, 87, 998-1008.	3.1	3
147	Impacts of konjac glucomannan with different degree of degradation or deacetylation on the stress resistance and fitness in Caenorhabditis elegans. International Journal of Biological Macromolecules, 2022, 204, 397-409.	7.5	1
148	Sodium caseinate enhances the effect of konjac flour on delaying gastric emptying based on a dynamic <i>in vitro</i> human <scp>stomachâ€IV</scp> (<scp>DIVHSâ€IV</scp>) system. Journal of the Science of Food and Agriculture, 2022, , .	3.5	1