Marc Benhamou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323304/publications.pdf Version: 2024-02-01

MARC RENHAMOL

#	Article	IF	CITATIONS
1	Identification of FcαRI as an Inhibitory Receptor that Controls Inflammation. Immunity, 2005, 22, 31-42.	14.3	314
2	Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools. Frontiers in Immunology, 2019, 10, 811.	4.8	179
3	Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. Journal of Experimental Medicine, 2010, 207, 731-750.	8.5	169
4	Glycosylation and Size of IgA1 Are Essential for Interaction with Mesangial Transferrin Receptor in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2004, 15, 622-634.	6.1	160
5	Inhibitory ITAMs as novel regulators of immunity. Immunological Reviews, 2009, 232, 59-71.	6.0	151
6	Protein-tyrosine phosphorylation: an essential component of FcεRI signaling. Trends in Immunology, 1992, 13, 195-197.	7.5	143
7	CD16 promotes Escherichia coli sepsis through an $FcR^{\hat{J}3}$ inhibitory pathway that prevents phagocytosis and facilitates inflammation. Nature Medicine, 2007, 13, 1368-1374.	30.7	118
8	Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. Journal of Clinical Investigation, 2014, 124, 4577-4589.	8.2	111
9	Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis. Blood, 2007, 110, 4086-4095.	1.4	107
10	Engagement of Transferrin Receptor by Polymeric IgA1: Evidence for a Positive Feedback Loop Involving Increased Receptor Expression and Mesangial Cell Proliferation in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2005, 16, 2667-2676.	6.1	90
11	Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nature Communications, 2017, 8, 246.	12.8	87
12	lgG1 and IVIg induce inhibitory ITAM signaling through FcÎ ³ RIII controlling inflammatory responses. Blood, 2012, 119, 3084-3096.	1.4	84
13	Shifting FcÎ ³ RIIA-ITAM from activation to inhibitory configuration ameliorates arthritis. Journal of Clinical Investigation, 2014, 124, 3945-3959.	8.2	77
14	The IgA1 immune complex–mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney International, 2012, 82, 1284-1296.	5.2	75
15	Mast cells as cellular sensors in inflammation and immunity. Frontiers in Immunology, 2011, 2, 37.	4.8	74
16	The TRPM4 Channel Controls Monocyte and Macrophage, but Not Neutrophil, Function for Survival in Sepsis. Journal of Immunology, 2012, 189, 3689-3699.	0.8	71
17	Mast cells and inflammatory kidney disease. Immunological Reviews, 2007, 217, 79-95.	6.0	62
18	Polymeric IgA1 controls erythroblast proliferation and accelerates erythropoiesis recovery in anemia. Nature Medicine, 2011, 17, 1456-1465.	30.7	62

Marc Benhamou

#	Article	IF	CITATIONS
19	Pathogenic significance of IgA receptor interactions in IgA nephropathy. Trends in Molecular Medicine, 2002, 8, 464-468.	6.7	58
20	The Glomerular Response to IgA Deposition in IgA Nephropathy. Seminars in Nephrology, 2008, 28, 88-95.	1.6	56
21	Inhibitory ITAMs: a matter of life and death. Trends in Immunology, 2008, 29, 366-373.	6.8	51
22	IgE Receptor Type I-dependent Tyrosine Phosphorylation of Phospholipid Scramblase. Journal of Biological Chemistry, 2001, 276, 20407-20412.	3.4	38
23	Mast cells in renal inflammation and fibrosis: Lessons learnt from animal studies. Molecular Immunology, 2015, 63, 86-93.	2.2	37
24	Phospholipid Scramblase 1 Modulates a Selected Set of IgE Receptor-mediated Mast Cell Responses through LAT-dependent Pathway. Journal of Biological Chemistry, 2008, 283, 25514-25523.	3.4	34
25	Stimulusâ€secretion coupling by highâ€affinity IgE receptor: New developments. FEBS Letters, 2010, 584, 4941-4948.	2.8	28
26	Mast Cell Degranulation Exacerbates Skin Rejection by Enhancing Neutrophil Recruitment. Frontiers in Immunology, 2018, 9, 2690.	4.8	27
27	Serum Iron Protects from Renal Postischemic Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 3605-3615.	6.1	25
28	CD89 Is a Potent Innate Receptor for Bacteria and Mediates Host Protection from Sepsis. Cell Reports, 2019, 27, 762-775.e5.	6.4	19
29	Role of FcÎ ³ RIIIA (CD16) in IVIg-Mediated Anti-Inflammatory Function. Journal of Clinical Immunology, 2014, 34, 46-50.	3.8	16
30	The receptor with high affinity for IgE on rat mast cells is a functional receptor for rat IgG2a. Molecular Immunology, 1994, 31, 1089-1097.	2.2	15
31	Mast cell chymase protects against acute ischemic kidney injury by limiting neutrophil hyperactivation and recruitment. Kidney International, 2020, 97, 516-527.	5.2	14
32	p28, a Novel IgE Receptor-associated Protein, Is a Sensor of Receptor Occupation by Its Ligand in Mast Cells. Journal of Biological Chemistry, 2004, 279, 12312-12318.	3.4	13
33	The murine α Fcγ R gene product: identification, expression and regulation. Molecular Immunology, 1990, 27, 1181-1188.	2.2	12
34	The high-affinity immunoglobulin E receptor as pharmacological target. European Journal of Pharmacology, 2016, 778, 24-32.	3.5	12
35	Protein tyrosine kinases in activation signal of human basophils through the immunoglobulin E receptor type I. Journal of Leukocyte Biology, 1996, 59, 461-470.	3.3	10
36	B LYMPHOCYTES UNDERGO APOPTOSIS BECAUSE OF FcÎ ³ RIIb stress response to infection: A novel mechanism of cell death in sepsis. Shock, 2006, 25, 61-65.	2.1	9

Marc Benhamou

#	Article	IF	CITATIONS
37	Regulation of the Tyrosine Phosphorylation of Phospholipid Scramblase 1 in Mast Cells That Are Stimulated through the High-Affinity IgE Receptor. PLoS ONE, 2014, 9, e109800.	2.5	8
38	Phospholipid scramblase 1 amplifies anaphylactic reactions in vivo. PLoS ONE, 2017, 12, e0173815.	2.5	8
39	Mast Cell Chymase and Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 302.	4.1	8
40	Identification of FcγRIIa, a product of the murine αFcγR gene. European Journal of Immunology, 1990, 20, 897-901.	2.9	6
41	Deciphering New Molecular Mechanisms of Mast Cell Activation. Frontiers in Immunology, 2013, 4, 100.	4.8	3
42	FcεRI-Induced Protein Tyrosine Phosphorylation. Molecular Biology Intelligence Unit, 1997, , 33-54.	0.2	3