
Sujit Deshmukh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323211/publications.pdf Version: 2024-02-01

SUUT DESHMUKH

#	Article	IF	CITATIONS
1	Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. Journal of Electroanalytical Chemistry, 2017, 788, 91-98.	1.9	103
2	Biofilm formation by <i>Exiguobacterium</i> sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC Advances, 2018, 8, 37590-37599.	1.7	68
3	3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode. Journal of Physical Chemistry C, 2019, 123, 15458-15466.	1.5	35
4	Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical supercapacitors. RSC Advances, 2017, 7, 327-335.	1.7	30
5	Microfluidic Affinity Sensor Based on a Molecularly Imprinted Polymer for Ultrasensitive Detection of Chlorpyrifos. ACS Omega, 2020, 5, 31765-31773.	1.6	27
6	Tuning the Laserâ€Induced Processing of 3D Porous Graphenic Nanostructures by Boronâ€Doped Diamond Particles for Flexible Microsupercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	25
7	Nanostructured nitrogen doped diamond for the detection of toxic metal ions. Electrochimica Acta, 2018, 283, 1871-1878.	2.6	24
8	Effective Utilization of Waste Red Mud for High Performance Supercapacitor Electrodes. Global Challenges, 2019, 3, 1800066.	1.8	24
9	Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode. Nanoscale, 2020, 12, 10117-10126.	2.8	23
10	Red Mud-Reduced Graphene Oxide Nanocomposites for the Electrochemical Sensing of Arsenic. ACS Applied Nano Materials, 2020, 3, 4084-4090.	2.4	21
11	Polarity dependent electrowetting for directional transport of water through patterned superhydrophobic laser induced graphene fibers. Carbon, 2021, 182, 605-614.	5.4	21
12	Potentiometric ion-selective sensors based on UV-ozone irradiated laser-induced graphene electrode. Electrochimica Acta, 2021, 387, 138341.	2.6	16
13	Probing the flat band potential and effective electronic carrier density in vertically aligned nitrogen doped diamond nanorods via electrochemical method. Electrochimica Acta, 2017, 246, 68-74.	2.6	15
14	Direct synthesis of electrowettable nanostructured hybrid diamond. Journal of Materials Chemistry A, 2019, 7, 19026-19036.	5.2	9
15	Potential use of smartly engineered red mud nanoparticles for removal of arsenate and pathogens from drinking water. SN Applied Sciences, 2020, 2, 1.	1.5	6
16	Single-step synthesis of core-shell diamond-graphite hybrid nano-needles as efficient supercapacitor electrode. Electrochimica Acta, 2021, 397, 139267.	2.6	4
17	Optical, structural, catalytic and electrochemical properties of the Au nanoparticles synthesized using CTAB based gels. Journal of Materials Science: Materials in Electronics, 2015, 26, 7515-7522.	1.1	2
18	Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods. MRS Communications, 2018, 8, 1311-1320.	0.8	1