Mervyn John Miles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-Time Force Reconstruction in a Transverse Dynamic Force Microscope. IEEE Transactions on Industrial Electronics, 2022, 69, 11403-11413.	7.9	2
2	A Multimode Transverse Dynamic Force Microscope—Design, Identification, and Control. IEEE Transactions on Industrial Electronics, 2020, 67, 4729-4740.	7.9	2
3	A super-twisting observer for atomic-force reconstruction in a probe microscope. Control Engineering Practice, 2020, 94, 104191.	5.5	8
4	Structural features distinguishing infectious ex vivo mammalian prions from non-infectious fibrillar assemblies generated in vitro. Scientific Reports, 2019, 9, 376.	3.3	37
5	Manipulation and Deposition of Complex, Functional Block Copolymer Nanostructures Using Optical Tweezers. ACS Nano, 2019, 13, 3858-3866.	14.6	21
6	Realâ€Time Sliding Mode Observer Scheme for Shear Force Estimation in a Transverse Dynamic Force Microscope. Asian Journal of Control, 2018, 20, 1317-1328.	3.0	10
7	Real-time tracking of metal nucleation via local perturbation of hydration layers. Nature Communications, 2017, 8, 971.	12.8	27
8	Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science, 2016, 352, 697-701.	12.6	305
9	Detection and photothermal actuation of microcantilever oscillations in air and liquid using a modified DVD optical pickup. Sensors and Actuators A: Physical, 2016, 248, 6-9.	4.1	7
10	Conductiveâ€AFM Patterning of Organic Semiconductors. Small, 2015, 11, 5054-5058.	10.0	13
11	Transformation and patterning of supermicelles using dynamic holographic assembly. Nature Communications, 2015, 6, 10009.	12.8	38
12	An adaptive non-raster scanning method in atomic force microscopy for simple sample shapes. Measurement Science and Technology, 2015, 26, 035401.	2.6	14
13	Fabricating microscopic tools: towards optically actuated micro-robotics. Proceedings of SPIE, 2015, ,	0.8	2
14	Cell paintballing using optically targeted coacervate microdroplets. Chemical Science, 2015, 6, 6106-6111.	7.4	18
15	"Red Tweezersâ€: Fast, customisable hologram generation for optical tweezers. Computer Physics Communications, 2014, 185, 268-273.	7.5	88
16	Self-Assembling Cages from Coiled-Coil Peptide Modules. Science, 2013, 340, 595-599.	12.6	451
17	High-Speed AFM with a Light Touch. Biophysical Journal, 2013, 104, 386a.	0.5	0
18	Opportunities in Highâ€5peed Atomic Force Microscopy. Small, 2013, 9, 3201-3211.	10.0	39

MERVYN JOHN MILES

#	Article	IF	CITATIONS
19	Optical binding of nanowires in counterpropagating beams. Proceedings of SPIE, 2013, , .	0.8	1
20	Fashioning microscopic tools. Proceedings of SPIE, 2013, , .	0.8	2
21	Shear force reconstruction in a vertically oriented probe microscope using a super-twisting observer. , 2013, , .		3
22	Shear Response of Nanoconfined Water on Muscovite Mica: Role of Cations. Langmuir, 2011, 27, 10351-10355.	3.5	30
23	Force spectroscopy of an elastic peptide: Effect of D ₂ O and temperature on persistence length. Microscopy Research and Technique, 2011, 74, 170-176.	2.2	11
24	Direct realâ€ŧime imaging of protein adsorption onto hydrophilic and hydrophobic surfaces. Biopolymers, 2010, 93, 74-84.	2.4	18
25	Non-conservative effects in optically trapped, low symmetry particles. , 2010, , .		1
26	Insulin Signaling to the Glomerular Podocyte Is Critical for Normal Kidney Function. Cell Metabolism, 2010, 12, 329-340.	16.2	376
27	Thermal motion of an optically trapped nanotool. , 2009, , .		Ο
28	Probing the nanoworld. Nanotechnology, 2009, 20, 430208-430208.	2.6	3
29	High-speed atomic force microscopy of dental enamel dissolution in citric acid. Archives of Histology and Cytology, 2009, 72, 209-215.	0.2	28
30	Fabrication of photonic crystal templates using holographic optical tweezers and adhesion via entropic attraction. Proceedings of SPIE, 2008, , .	0.8	0
31	Nanotechnology at the interface of cell biology, materials science and medicine. Nanotechnology, 2008, 19, 380201-380201.	2.6	3
32	Holographic assembly workstation for optical manipulation. Journal of Optics, 2008, 10, 044009.	1.5	46
33	Optically controlled, holographic micro-hand. , 2007, , .		Ο
34	The isolated MUC5AC gene product from human ocular mucin displays intramolecular conformational heterogeneity. Glycobiology, 2007, 17, 578-585.	2.5	24
35	A chlorite mineral surface actively drives the deposition of DNA molecules in stretched conformations. Nanotechnology, 2006, 17, 3897-3902.	2.6	25
36	An optical trapped microhand for manipulating micron-sized objects. Optics Express, 2006, 14, 12497.	3.4	75

MERVYN JOHN MILES

#	Article	IF	CITATIONS
37	Following Processes in Synthetic Polymers with Scanning Probe Microscopy. ACS Symposium Series, 2005, , 194-206.	0.5	4
38	Exploring the consequences of attractive and repulsive interaction regimes in tapping mode atomic force microscopy of DNA. Nanotechnology, 2004, 15, S176-S183.	2.6	47
39	SPM 2003. Ultramicroscopy, 2004, 100, iii.	1.9	0
40	Conformation of a Single Polyacrylamide Molecule Adsorbed onto a Mica Surface Studied with Atomic Force Microscopy. Macromolecules, 2004, 37, 3799-3803.	4.8	39
41	Reorganization and Melting of Polyethylene Single Crystals:  Complementary TEM, DSC, and Real-Time AFM Studies. Macromolecules, 2004, 37, 4562-4572.	4.8	58
42	Glycopolymer charge density determines conformation in human ocular mucin gene products: an atomic force microscope study. Journal of Structural Biology, 2004, 145, 246-253.	2.8	43
43	Influence of properties of layered silicate minerals on adsorbed DNA surface affinity, self-assembly and nanopatterning. Philosophical Magazine Letters, 2004, 84, 539-545.	1.2	23
44	Tour de force microscopy. Materials Today, 2003, 6, 30-37.	14.2	7
45	Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second. Applied Physics Letters, 2003, 83, 6-8.	3.3	112
46	An Atomic Force Microscopy Observation of Poly(Vinylidene Fluoride) Banded Spherulites. Journal of Macromolecular Science - Physics, 2003, 42, 753-760.	1.0	21
47	Scanning Probe Microscopy for Chromosomal Research Archives of Histology and Cytology, 2002, 65, 369-376.	0.2	8
48	Pulling Single Chains out of a Collapsed Polymer Monolayer in Bad-Solvent Conditions. Materials Research Society Symposia Proceedings, 2002, 734, 161.	0.1	4
49	Characterization of Ultraflat Titanium Oxide Surfaces. Chemistry of Materials, 2002, 14, 777-789.	6.7	33
50	Comparison Between Shear Force and Tapping Mode AFM - High Resolution Imaging of DNA. Single Molecules, 2002, 3, 105-110.	0.9	30
51	Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness. Surface Science, 2001, 491, 405-420.	1.9	80
52	Hydrolysis of the Nafion® precursor studied by X-ray scattering and in-situ atomic force microscopy. E-Polymers, 2001, 1, .	3.0	16
53	Some recent developments in SPM of crystalline polymers. Macromolecular Symposia, 2001, 167, 1-14.	0.7	21
54	Internal structure of the starch granule revealed by AFM. Carbohydrate Research, 2001, 330, 249-256.	2.3	140

MERVYN JOHN MILES

#	Article	IF	CITATIONS
55	Human chromosome structure studied by scanning force microscopy after an enzymatic digestion of the covering cell material. Ultramicroscopy, 2000, 82, 245-251.	1.9	36
56	Piconewton regime dynamic force microscopy in liquid. Applied Physics Letters, 2000, 77, 582-584.	3.3	137
57	Atomic Force Microscopy (AFM) Study of Interactions of HMW Subunits of Wheat Glutenin. Cereal Chemistry, 2000, 77, 107-110.	2.2	41
58	In Situ Surface Adsorption of the Protein C Hordein Using Atomic Force Microscopy. Langmuir, 2000, 16, 1463-1468.	3.5	37
59	Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy. Langmuir, 2000, 16, 8167-8175.	3.5	169
60	Scanning probe microscopy studies of cereal seed storage protein structures. Scanning, 1999, 21, 293-298.	1.5	11
61	Small angle X-ray scattering of wheat seed-storage proteins: α-, γ- and ω-gliadins and the high molecular weight (HMW) subunits of glutenin. BBA - Proteins and Proteomics, 1999, 1430, 359-366.	2.1	65
62	Identification of Microphases in Mixed α- and ω-Gliadin Protein Films Investigated by Atomic Force Microscopy. Journal of Agricultural and Food Chemistry, 1999, 47, 5093-5099.	5.2	25
63	Selective Cleaning of the Cell Debris in Human Chromosome Preparations Studied by Scanning Force Microscopy. Journal of Structural Biology, 1999, 128, 200-210.	2.8	28
64	Scanning Probe Microscopes—Applications in Cereal Science. Cereal Chemistry, 1997, 74, 193-199.	2.2	18
65	High-Resolution Atomic Force Microscopy of NativeValoniaCellulose I Microcrystals. Journal of Structural Biology, 1997, 119, 129-138.	2.8	121
66	Analysis off cereal chromosomes by atomic force microscopy. Genome, 1996, 39, 439-444.	2.0	25
67	<title>Examining polymeric materials with near-field optics</title> ., 1995, , .		1
68	<title>Application of scanning force microscopy and near-field optical microscopy to liquid crystalline systems: observing free surfaces, smectic structural forces, and molecular orientation</title> . , 1995, 2384, 60.		2
69	Structure, Assembly and Targeting of Wheat Storage Proteins. Journal of Plant Physiology, 1995, 145, 620-625.	3.5	20
70	Atomic force microscopy of the banded structure of lyotropic polymers. Macromolecular Rapid Communications, 1994, 15, 815-821.	3.9	11
71	Scanning probe microscopy of collagen I and pN-collagen I assemblies and the relevance to scanning tunnelling microscopy contrast generation in proteins. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2589.	1.7	25
72	Biomolecular scrutiny by the STM. Physics World, 1990, 3, 28-33.	0.0	24

Mervyn John Miles

#	Article	IF	CITATIONS
73	Biologically engineered polymers 1989. International Journal of Biological Macromolecules, 1990, 12, 66.	7.5	0
74	Molecular origins of acetan solution properties. International Journal of Biological Macromolecules, 1989, 11, 326-328.	7.5	36
75	Aqueous dissolution of crystalline and amorphous amylose-alcohol complexes. International Journal of Biological Macromolecules, 1989, 11, 339-344.	7.5	80
76	Evidence for intermolecular binding between xanthan and the glucomannan konjac mannan. Carbohydrate Research, 1988, 176, 329-334.	2.3	86
77	The gelation and crystallisation of amylopectin. Carbohydrate Research, 1987, 162, 277-293.	2.3	390
78	The effect of concentration and botanical source on the gelation and retrogradation of starch. Journal of the Science of Food and Agriculture, 1987, 39, 169-177.	3.5	203
79	X-Ray fibre-diffraction studies of synergistic, binary polysaccharide gels. Carbohydrate Research, 1987, 160, 411-423.	2.3	176
80	Biologically-engineered polymers conference, 21–23 July 1986, churchill college, cambridge, UK. Carbohydrate Polymers, 1987, 7, 241-242.	10.2	0
81	Biologically engineered polymers. International Journal of Biological Macromolecules, 1986, 8, 322.	7.5	0
82	X-Ray fibre diffraction results from Alcaligenes (ATCC 31555) microbial polysaccharide S-130 and a comparison with gellan gum. Carbohydrate Research, 1986, 148, c1-c4.	2.3	12
83	Gelation of amylose. Carbohydrate Research, 1985, 135, 257-269.	2.3	322
84	The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research, 1985, 135, 271-281.	2.3	1,034
85	Rheology and microstructure of solutions of the microbial polysaccharide from Pseudomonas elodea. Carbohydrate Research, 1983, 114, 181-191.	2.3	62
86	Effects of environment on the mechanical properties of plastics under high pressure. Polymer Engineering and Science, 1978, 18, 1235-1239.	3.1	7