RafaÅ, Malinowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322930/publications.pdf

Version: 2024-02-01

52 837 16
papers citations h-index

16 27
h-index g-index

52 52 all docs citations

52 times ranked 966 citing authors

#	Article	IF	CITATIONS
1	Bactericidal Properties of Low-Density Polyethylene (LDPE) Modified with Commercial Additives Used for Food Protection in the Food Industry. Environments - MDPI, 2022, 9, 84.	1.5	1
2	The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly($\hat{l}\mu$ -Caprolactone) Composites Modified by Electron Beam Irradiation. Applied Sciences (Switzerland), 2021, 11, 5317.	1.3	9
3	Bactericidal and Fungistatic Properties of LDPE Modified with a Biocide Containing Metal Nanoparticles. Materials, 2021, 14, 4228.	1.3	12
4	Laser Activated and Electroless Metalized Polyurethane Coatings Containing Copper(II) L-Tyrosine and Glass Microspheres. Molecules, 2021, 26, 5571.	1.7	2
5	Surface modification of maize stem with polydopamine and tannic acid coatings. Surfaces and Interfaces, 2021, 26, 101319.	1.5	9
6	New Organophilic Montmorillonites with Lactic Acid Oligomers and Other Environmentally Friendly Compounds and Their Effect on Mechanical Properties of Polylactide (PLA). Materials, 2021, 14, 6286.	1.3	0
7	Copper Electroless Metallization of Cellulose Paper via Polydopamine Coating and Silver Catalyst. Materials, 2021, 14, 6862.	1.3	3
8	Laser-induced surface activation and electroless metallization of polyurethane coating containing copper(II) L-tyrosine. Applied Surface Science, 2020, 505, 144429.	3.1	12
9	Studies on Manufacturing, Mechanical Properties and Structure of Poly(butylene) Tj ETQq1 1 0.784314 rgBT /Ove of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 1095-1105.	erlock 10 Ti 2.7	Tf 50 427 Td 9
10	TG-FTIR coupled analysis to predetermine effective precursors for laser-activated and electroless metallized materials. Journal of Thermal Analysis and Calorimetry, 2020, 141, 697-705.	2.0	3
11	Plant extracts as natural additives for environmentally friendly polylactide films. Food Packaging and Shelf Life, 2020, 26, 100593.	3.3	15
12	Copper Filled Poly(Acrylonitrile-co-Butadiene-co-Styrene) Composites for Laser-Assisted Selective Metallization. Materials, 2020, 13, 2224.	1.3	5
13	Studies on the Uncrosslinked Fraction of PLA/PBAT Blends Modified by Electron Radiation. Materials, 2020, 13, 1068.	1.3	16
14	Composting of Polylactide Containing Natural Anti-Aging Compounds of Plant Origin. Polymers, 2019, 11, 1582.	2.0	10
15	The Effect of Accelerated Aging on Polylactide Containing Plant Extracts. Polymers, 2019, 11, 575.	2.0	33
16	Flax fibers reinforced polycaprolactone modified by triallyl isocyanurate and electron radiation. Polymer Composites, 2019, 40, 481-488.	2.3	4
17	Advances in studies of thermal degradation of polymeric materials Part I. Literature studies. Polimery, 2019, 64, 241-251.	0.4	2
18	Advances in studies of thermal degradation of polymeric materials. Part II. The influence of various factors on the thermal degradation of polymeric materials during their processing. Polimery, 2019, 64, 317-326.	0.4	2

#	Article	IF	CITATIONS
19	Some effects of radiation treatment of biodegradable PCL/PLA blends. Journal of Polymer Engineering, 2018, 38, 635-640.	0.6	9
20	Flax fibres reinforced polylactide modified by ionizing radiation. Industrial Crops and Products, 2018, 112, 716-723.	2.5	21
21	Some effects of foaming of the poly(butylene adipateâ€ <i>co</i> àâ€ŧerephthalate) modified by electron radiation. Polymers for Advanced Technologies, 2018, 29, 1117-1122.	1.6	13
22	Selected properties of polycaprolactone containing natural antiâ€aging compounds. Advances in Polymer Technology, 2018, 37, 3499-3510.	0.8	6
23	Selected properties of polylactide containing natural antiaging compounds. Polymers for Advanced Technologies, 2018, 29, 2963-2971.	1.6	10
24	Analysis of swelling degree and gel fraction of polylactide/poly(butylene adipate-co-terephthalate) blends crosslinked by radiation. Polimery, 2018, 63, 25-30.	0.4	5
25	Mechanical properties and biodegradability of flax fiber-reinforced composite of polylactide and polycaprolactone. Polimery, 2018, 63, 603-610.	0.4	17
26	Application of thermogravimetry in the assessment of coatings ability to be metallized. Journal of Thermal Analysis and Calorimetry, 2017, 127, 381-387.	2.0	7
27	Effects of UV radiation on some properties of dyed polylactide film. Polimery, 2017, 62, 193-197.	0.4	2
28	Some properties of polylactide modified with polycaprolactone Wybrane wÅ,aÅ>ciwoÅ>ci polilaktydu modyfikowanego polikaprolaktonem. Przemysl Chemiczny, 2017, 1, 156-160.	0.0	0
29	Antimicrobial carbon materials incorporating copper nanoâ€crystallites and their <scp>PLA</scp> composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	10
30	Effect of electron radiation and triallyl isocyanurate on the average molecular weight and crosslinking of poly(⟨i⟩ε⟨/i⟩â€caprolactone). Polymers for Advanced Technologies, 2016, 27, 125-130.	1.6	14
31	Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers. Applied Surface Science, 2016, 377, 228-237.	3.1	31
32	Effect of high energy \hat{l}^2 -radiation and addition of triallyl isocyanurate on the selected properties of polylactide. Nuclear Instruments & Methods in Physics Research B, 2016, 377, 59-66.	0.6	22
33	Application of the electron radiation and triallyl isocyanurate for production of aliphatic-aromatic co-polyester of modified properties. International Journal of Advanced Manufacturing Technology, 2016, 87, 3307-3314.	1.5	13
34	Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Management, 2016, 52, 69-76.	3.7	64
35	Mechanical properties of PLA/PCL blends crosslinked by electron beam and TAIC additive. Chemical Physics Letters, 2016, 662, 91-96.	1.2	23
36	Laser modification of polylactide surface layer prior autocatalytic metallization. Surface and Coatings Technology, 2016, 304, 68-75.	2.2	13

#	Article	IF	CITATIONS
37	Influence of Specific Processing Conditions and Aliphatic-Aromatic Copolyester on Polylactide Properties. Chemical Engineering Communications, 2016, 203, 1540-1546.	1.5	3
38	The soluble copolymers of polyalkylthiophenes with different molar ratios of co-mers. Journal of Polymer Engineering, 2015, 35, 241-246.	0.6	2
39	Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization. Materials Chemistry and Physics, 2015, 153, 135-144.	2.0	12
40	Influence of glass microspheres on selected properties of polylactide composites. Composites Part B: Engineering, 2015, 76, 13-19.	5.9	25
41	Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods. Applied Surface Science, 2015, 346, 11-17.	3.1	39
42	Studies on functional properties of PCL films modified by electron radiation and TAIC additive. Polymer Testing, 2015, 48, 169-174.	2.3	15
43	Autocatalytic metallization of polylactide. Polimery, 2015, 60, 492-500.	0.4	6
44	Assessment of dicumyl peroxide ability to improve adhesion between polylactide and flax or hemp fibres. Composite Interfaces, 2014, 21, 671-683.	1.3	21
45	Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal, 2013, 49, 3630-3641.	2.6	102
46	A comparative analysis of mass losses of some aliphatic polyesters upon enzymatic degradation. Polymer Testing, 2013, 32, 209-214.	2.3	28
47	Some composting and biodegradation effects of physically or chemically crosslinked poly(lactic acid). Polymer Testing, 2012, 31, 83-92.	2.3	34
48	Influence of Dicumyl Peroxide Content on Thermal and Mechanical Properties of Polylactide. International Polymer Processing, 2011, 26, 580-586.	0.3	36
49	Low-temperature plasma modification of polymers â€" Methods and equipment. Polimery, 2011, 56, 185-195.	0.4	8
50	GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films. Chemical Papers, 2010, 64, .	1.0	6
51	Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide. Radiation Physics and Chemistry, 2010, 79, 1052-1057.	1.4	57
52	Selected biodegradable polymers - preparation, properties, applications. Polimery, 2008, 53, 799-807.	0.4	16