
Andrew Bivard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322927/publications.pdf Version: 2024-02-01

Δημαείνι Βινλάσ

#	Article	IF	CITATIONS
1	Whole blood viscosity is associated with baseline cerebral perfusion in acute ischemic stroke. Neurological Sciences, 2022, 43, 2375-2381.	1.9	10
2	Does variability in automated perfusion software outputs for acute ischemic stroke matter? Reanalysis of EXTEND perfusion imaging. CNS Neuroscience and Therapeutics, 2022, 28, 139-144.	3.9	6
3	Bringing CT Scanners to the Skies: Design of a CT Scanner for an Air Mobile Stroke Unit. Applied Sciences (Switzerland), 2022, 12, 1560.	2.5	3
4	TACTICS - Trial of Advanced CT Imaging and Combined Education Support for Drip and Ship: evaluating the effectiveness of an †implementation intervention' in providing better patient access to reperfusion therapies: protocol for a non-randomised controlled stepped wedge cluster trial in acute stroke. BMJ Open, 2022, 12, e055461.	1.9	2
5	Endovascular Thrombectomy Versus Medical Management in Isolated <scp>M2</scp> Occlusions: Pooled <scp>Patientâ€Level</scp> Analysis from the <scp>EXTENDâ€IA</scp> Trials, <scp>INSPIRE</scp> , and <scp>SELECT</scp> Studies. Annals of Neurology, 2022, 91, 629-639.	5.3	17
6	Comparison of tenecteplase with alteplase for the early treatment of ischaemic stroke in the Melbourne Mobile Stroke Unit (TASTE-A): a phase 2, randomised, open-label trial. Lancet Neurology, The, 2022, 21, 520-527.	10.2	69
	Tenecteplase versus Alteplase for Stroke Thrombolysis Evaluation Trial in the Ambulance (Mobile) Tj ETQq1 1 0.7	84314 rgl	3T /Overlock
7	superiority trial of tenecteplase versus alteplase for ischaemic stroke patients presenting within 4.5 hours of symptom onset to the mobile stroke unit. BMI Open, 2022, 12, e056573.	1.9	5
8	Comparison of Computed Tomography Perfusion and Multiphase Computed Tomography Angiogram in Predicting Clinical Outcomes in Endovascular Thrombectomy. Stroke, 2022, 53, 2926-2934.	2.0	7
9	Association of Endovascular Thrombectomy With Functional Outcome in Patients With Acute Stroke With a Large Ischemic Core. Neurology, 2022, 99, .	1.1	13
10	Association of Collateral Status and Ischemic Core Growth in Patients With Acute Ischemic Stroke. Neurology, 2021, 96, e161-e170.	1.1	52
11	The ischemic penumbra: From concept to reality. International Journal of Stroke, 2021, 16, 497-509.	5.9	44
12	Role of Computed Tomography Perfusion in Identification of Acute Lacunar Stroke Syndromes. Stroke, 2021, 52, 339-343.	2.0	7
13	Association of Reperfusion After Thrombolysis With Clinical Outcome Across the 4.5- to 9-Hours and Wake-up Stroke Time Window. JAMA Neurology, 2021, 78, 236.	9.0	12
14	Automated estimation of ischemic core prior to thrombectomy: comparison of two current algorithms. Neuroradiology, 2021, 63, 1645-1649.	2.2	10
15	Does Intravenous Thrombolysis Within 4.5 to 9 Hours Increase Clot Migration Leading to Endovascular Inaccessibility?. Stroke, 2021, 52, 1083-1086.	2.0	4
16	The Need for Structured Strategies to Improve Stroke Care in a Rural Telestroke Network in Northern New South Wales, Australia: An Observational Study. Frontiers in Neurology, 2021, 12, 645088.	2.4	3
17	Assessing the Relative Value of CT Perfusion Compared to Non-contrast CT and CT Angiography in Prognosticating Reperfusion-Eligible Acute Ischemic Stroke Patients. Frontiers in Neurology, 2021, 12, 736768.	2.4	1
18	Stroke Patients With Faster Core Growth Have Greater Benefit From Endovascular Therapy. Stroke, 2021, 52, 3998-4006.	2.0	10

#	Article	IF	CITATIONS
19	Effects of therapy with a free-standing robotic exoskeleton on motor function and other health indicators in people with severe mobility impairment due to chronic stroke: A quasi-controlled study. Journal of Rehabilitation and Assistive Technologies Engineering, 2021, 8, 205566832110458.	0.9	0
20	Optimal Tissue Reperfusion Estimation by Computed Tomography Perfusion Post-Thrombectomy in Acute Ischemic Stroke. Stroke, 2021, 52, e760-e763.	2.0	10
21	Real-World Cost-Effectiveness of Late Time Window Thrombectomy for Patients With Ischemic Stroke. Frontiers in Neurology, 2021, 12, 780894.	2.4	4
22	Physiotherapy using a free-standing robotic exoskeleton for patients with spinal cord injury: a feasibility study. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 180.	4.6	5
23	Comparing mismatch strategies for patients being considered for ischemic stroke tenecteplase trials. International Journal of Stroke, 2020, 15, 507-515.	5.9	6
24	Implementation of multimodal computed tomography in a telestroke network: Fiveâ€year experience. CNS Neuroscience and Therapeutics, 2020, 26, 367-373.	3.9	22
25	Computed Tomography Perfusion Identifies Patients With Stroke With Impaired Cardiac Function. Stroke, 2020, 51, 498-503.	2.0	11
26	Thrombolysis implementation intervention and clinical outcome: a secondary analysis of a cluster randomized trial. BMC Cardiovascular Disorders, 2020, 20, 432.	1.7	2
27	Abnormalities on Perfusion CT and Intervention for Intracranial Hypertension in Severe Traumatic Brain Injury. Journal of Clinical Medicine, 2020, 9, 2000.	2.4	3
28	Air vs. Road Decision for Endovascular Clot Retrieval in a Rural Telestroke Network. Frontiers in Neurology, 2020, 11, 628.	2.4	9
29	Plasmin Generation Potential and Recanalization in Acute Ischaemic Stroke; an Observational Cohort Study of Stroke Biobank Samples. Frontiers in Neurology, 2020, 11, 589628.	2.4	4
30	Artificial intelligence for decision support in acute stroke — current roles and potential. Nature Reviews Neurology, 2020, 16, 575-585.	10.1	47
31	Intraarterial Versus Intravenous Tirofiban as an Adjunct to Endovascular Thrombectomy for Acute Ischemic Stroke. Stroke, 2020, 51, 2925-2933.	2.0	43
32	Multimodal Computed Tomography Increases the Detection of Posterior Fossa Strokes Compared to Brain Non-contrast Computed Tomography. Frontiers in Neurology, 2020, 11, 588064.	2.4	10
33	Reduced Impact of Endovascular Thrombectomy on Disability in Real-World Practice, Relative to Randomized Controlled Trial Evidence in Australia. Frontiers in Neurology, 2020, 11, 593238.	2.4	5
34	Permeability Measures Predict Hemorrhagic Transformation after Ischemic Stroke. Annals of Neurology, 2020, 88, 466-476.	5.3	20
35	No Evidence of the "Weekend Effect―in the Northern New South Wales Telestroke Network. Frontiers in Neurology, 2020, 11, 130.	2.4	6
36	Gradient of Tissue Injury after Stroke: Rethinking the Infarct versus Noninfarcted Dichotomy. Cerebrovascular Diseases, 2020, 49, 32-38.	1.7	8

#	Article	IF	CITATIONS
37	Clusterâ€Randomized Trial of Thrombolysis Implementation Support in Metropolitan and Regional Australian Stroke Centers: Lessons for Individual and Systems Behavior Change. Journal of the American Heart Association, 2020, 9, e012732.	3.7	18
38	Perfusion Computed Tomography Accurately Quantifies Collateral Flow After Acute Ischemic Stroke. Stroke, 2020, 51, 1006-1009.	2.0	31
39	Exploring the relationship between ischemic core volume and clinical outcomes after thrombectomy or thrombolysis. Neurology, 2019, 93, e283-e292.	1.1	17
40	Modafinil treatment modulates functional connectivity in stroke survivors with severe fatigue. Scientific Reports, 2019, 9, 9660.	3.3	12
41	Dynamic CT but Not Optimized Multiphase CT Angiography Accurately Identifies CT Perfusion Target Mismatch Ischemic Stroke Patients. Frontiers in Neurology, 2019, 10, 1130.	2.4	6
42	Automated CT perfusion imaging for acute ischemic stroke. Neurology, 2019, 93, 888-898.	1.1	133
43	The blood pressure paradox in acute ischemic stroke. Annals of Neurology, 2019, 85, 331-339.	5.3	36
44	Extending thrombolysis to 4·5–9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. Lancet, The, 2019, 394, 139-147.	13.7	321
45	When a Slice Is Not Enough! Comparison of Whole-Brain versus Standard Limited-Slice Perfusion Computed Tomography in Patients with Severe Traumatic Brain Injury. Journal of Clinical Medicine, 2019, 8, 701.	2.4	0
46	Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke. New England Journal of Medicine, 2019, 380, 1795-1803.	27.0	653
47	Influence of occlusion site and baseline ischemic core on outcome in patients with ischemic stroke. Neurology, 2019, 92, e2626-e2643.	1.1	36
48	Predicting Modafinil-Treatment Response in Poststroke Fatigue Using Brain Morphometry and Functional Connectivity. Stroke, 2019, 50, 602-609.	2.0	20
49	White Matter Degeneration after Ischemic Stroke: A Longitudinal Diffusion Tensor Imaging Study. Journal of Neuroimaging, 2019, 29, 111-118.	2.0	23
50	Do powered over-ground lower limb robotic exoskeletons affect outcomes in the rehabilitation of people with acquired brain injury?. Disability and Rehabilitation: Assistive Technology, 2019, 14, 764-775.	2.2	10
51	Single-phase CT angiography: collateral grade is independent of scan weighting. Neuroradiology, 2019, 61, 19-28.	2.2	9
52	Cerebral blood volume lesion extent predicts functional outcome in patients with vertebral and basilar artery occlusion. International Journal of Stroke, 2019, 14, 540-547.	5.9	25
53	Correction for Delay and Dispersion Results in More Accurate Cerebral Blood Flow Ischemic Core Measurement in Acute Stroke. Stroke, 2018, 49, 924-930.	2.0	44
54	Growth Hormone Improves Cognitive Function After Experimental Stroke. Stroke, 2018, 49, 1257-1266.	2.0	44

#	Article	IF	CITATIONS
55	Collateral response modulates the time–penumbra relationship in proximal arterial occlusions. Neurology, 2018, 90, e316-e322.	1.1	37
56	Transient Ischemic Attack Results in Delayed Brain Atrophy and Cognitive Decline. Stroke, 2018, 49, 384-390.	2.0	38
57	Use of computed tomography perfusion for acute stroke in routine clinical practice: Complex scenarios, mimics, and artifacts. International Journal of Stroke, 2018, 13, 469-472.	5.9	9
58	Tissue is more important than time: insights into acute ischemic stroke from modern brain imaging. Current Opinion in Neurology, 2018, 31, 23-27.	3.6	16
59	Identification of Corticospinal Tract Lesion for Predicting Outcome in Small Perfusion Stroke. Stroke, 2018, 49, 2683-2691.	2.0	4
60	Cost-effectiveness of targeted thrombolytic therapy for stroke patients using multi-modal CT compared to usual practice. PLoS ONE, 2018, 13, e0206203.	2.5	5
61	Growth Hormone Deficiency Is Frequent After Recent Stroke. Frontiers in Neurology, 2018, 9, 713.	2.4	12
62	Tissue Is More Important than Time in Stroke Patients Being Assessed for Thrombolysis. Frontiers in Neurology, 2018, 9, 41.	2.4	14
63	Short- and Long-Term Efficacy of Modafinil at Improving Quality of Life in Stroke Survivors: A Post Hoc Sub Study of the Modafinil in Debilitating Fatigue After Stroke Trial. Frontiers in Neurology, 2018, 9, 269.	2.4	14
64	Intravenous Thrombolysis May Not Improve Clinical Outcome of Acute Ischemic Stroke Patients Without a Baseline Vessel Occlusion. Frontiers in Neurology, 2018, 9, 405.	2.4	4
65	Computed Tomographic Perfusion Predicts Poor Outcomes in a Randomized Trial of Endovascular Therapy. Stroke, 2018, 49, 1426-1433.	2.0	29
66	Perfusion computed tomography in patients with stroke thrombolysis. Brain, 2017, 140, aww338.	7.6	27
67	Delay of late-venous phase cortical vein filling in acute ischemic stroke patients: Associations with collateral status. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 671-682.	4.3	40
68	Baseline collateral status and infarct topography in post-ischaemic perilesional hyperperfusion: An arterial spin labelling study. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1148-1162.	4.3	26
69	Validating a Predictive Model of Acute Advanced Imaging Biomarkers in Ischemic Stroke. Stroke, 2017, 48, 645-650.	2.0	45
70	The establishment of a telestroke service using multimodal CT imaging decision assistance: "Turning on the fog lights― Journal of Clinical Neuroscience, 2017, 37, 1-5.	1.5	17
71	The Basilar Artery on Computed Tomography Angiography Prognostic Score for Basilar Artery Occlusion. Stroke, 2017, 48, 631-637.	2.0	105
72	MIDAS (Modafinil in Debilitating Fatigue After Stroke). Stroke, 2017, 48, 1293-1298.	2.0	63

#	Article	IF	CITATIONS
73	Perfusion Abnormalities are Frequently Detected by Early CT Perfusion and Predict Unfavourable Outcome Following Severe Traumatic Brain Injury. World Journal of Surgery, 2017, 41, 2512-2520.	1.6	16
74	Validation of the National Institutes of Health Stroke Scale-8 to Detect Large Vessel Occlusion in Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 1419-1426.	1.6	28
75	Peripheral Immune Cell Counts and Advanced Imaging as Biomarkers of Stroke Outcome. Cerebrovascular Diseases Extra, 2017, 6, 120-128.	1.5	23
76	Response by Bivard et al to Letter Regarding Article, "Impact of Computed Tomography Perfusion Imaging on the Response to Tenecteplase in Ischemic Stroke: Analysis of 2 Randomized Controlled Trials― Circulation, 2017, 135, e1141-e1142.	1.6	2
77	Evaluation of hyperacute infarct volume using ASPECTS and brain CT perfusion core volume. Neurology, 2017, 88, 2248-2253.	1.1	81
78	Tenecteplase in ischemic stroke offers improved recanalization. Neurology, 2017, 89, 62-67.	1.1	59
79	Impact of Computed Tomography Perfusion Imaging on the Response to Tenecteplase in Ischemic Stroke. Circulation, 2017, 135, 440-448.	1.6	36
80	Influence of Penumbral Reperfusion on Clinical Outcome Depends on Baseline Ischemic Core Volume. Stroke, 2017, 48, 2739-2745.	2.0	19
81	Response by Bivard et al to Letter Regarding Article, "Validating a Predictive Model of Acute Advanced Imaging Biomarkers in Ischemic Stroke― Stroke, 2017, 48, e226.	2.0	1
82	lschemic core thresholds change with time to reperfusion: A case control study. Annals of Neurology, 2017, 82, 995-1003.	5.3	89
83	A model based on the Pennes bioheat transfer equation is valid in normal brain tissue but not brain tissue suffering focal ischaemia. Australasian Physical and Engineering Sciences in Medicine, 2017, 40, 841-850.	1.3	7
84	Immunity and stroke, the hurdles of stroke research translation. International Journal of Stroke, 2017, 12, 123-131.	5.9	12
85	Quantifying reperfusion of the ischemic region on whole-brain computed tomography perfusion. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2125-2136.	4.3	10
86	Visibility of CT Early Ischemic Change Is Significantly Associated with Time from Stroke Onset to Baseline Scan beyond the First 3 Hours of Stroke Onset. Journal of Stroke, 2017, 19, 340-346.	3.2	19
87	The influence of initial stroke severity on mortality, overall functional outcome and in-hospital placement at 90 days following acute ischemic stroke: A tertiary hospital stroke register study. Neurology India, 2017, 65, 1252.	0.4	31
88	Global White Matter Hypoperfusion on <scp>CT</scp> Predicts Larger Infarcts and Hemorrhagic Transformation after Acute Ischemia. CNS Neuroscience and Therapeutics, 2016, 22, 238-243.	3.9	17
89	Association of Cortical Vein Filling with Clot Location and Clinical Outcomes in Acute Ischaemic Stroke Patients. Scientific Reports, 2016, 6, 38525.	3.3	18
90	International benchmarking for acute thrombolytic therapy implementation in Australia and Japan. Journal of Clinical Neuroscience, 2016, 29, 87-91.	1.5	3

#	Article	IF	CITATIONS
91	A comprehensive analysis of metabolic changes in the salvaged penumbra. Neuroradiology, 2016, 58, 409-415.	2.2	12
92	Acute Stroke Imaging Research Roadmap III Imaging Selection and Outcomes in Acute Stroke Reperfusion Clinical Trials. Stroke, 2016, 47, 1389-1398.	2.0	88
93	Too good to treat? ischemic stroke patients with small computed tomography perfusion lesions may not benefit from thrombolysis. Annals of Neurology, 2016, 80, 286-293.	5.3	29
94	Modafinil In Debilitating fatigue After Stroke (MIDAS): study protocol for a randomised, double-blinded, placebo-controlled, crossover trial. Trials, 2016, 17, 410.	1.6	11
95	Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core. Radiology, 2016, 279, 876-887.	7.3	124
96	Relationship Between Collateral Status, Contrast Transit, and Contrast Density in Acute Ischemic Stroke. Stroke, 2016, 47, 742-749.	2.0	35
97	Association between baseline peri-infarct magnetic resonance spectroscopy and regional white matter atrophy after stroke. Neuroradiology, 2016, 58, 3-10.	2.2	8
98	Multi-Modal CT in Acute Stroke: Wait for a Serum Creatinine before Giving Intravenous Contrast? No!. International Journal of Stroke, 2015, 10, 1014-1017.	5.9	26
99	Multiphase CT Angiography: A Poor Man's Perfusion CT?. Radiology, 2015, 277, 922-924.	7.3	7
100	Perfusion computed tomography to assist decision making for stroke thrombolysis. Brain, 2015, 138, 1919-1931.	7.6	118
101	Contralesional Thalamic Surface Atrophy and Functional Disconnection 3 Months after Ischemic Stroke. Cerebrovascular Diseases, 2015, 39, 232-241.	1.7	26
102	Spectroscopy of Reperfused Tissue after Stroke Reveals Heightened Metabolism in Patients with Good Clinical Outcomes. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1944-1950.	4.3	26
103	Arterial Spin Labeling Versus Bolus-Tracking Perfusion in Hyperacute Stroke. Stroke, 2014, 45, 127-133.	2.0	72
104	Comparison of Computed Tomographic and Magnetic Resonance Perfusion Measurements in Acute Ischemic Stroke. Stroke, 2014, 45, 1727-1732.	2.0	73
105	Arterial Spin Labeling Identifies Tissue Salvage and Good Clinical Recovery After Acute Ischemic Stroke. Journal of Neuroimaging, 2013, 23, 391-396.	2.0	43
106	Perfusion CT in Acute Stroke: A Comprehensive Analysis of Infarct and Penumbra. Radiology, 2013, 267, 543-550.	7.3	239
107	Review of Stroke Thrombolytics. Journal of Stroke, 2013, 15, 90.	3.2	90
108	Perfusion Patterns of Ischemic Stroke on Computed Tomography Perfusion. Journal of Stroke, 2013, 15, 164.	3.2	42

#	Article	IF	CITATIONS
109	Perfusion computer tomography: imaging and clinical validation in acute ischaemic stroke. Brain, 2011, 134, 3408-3416.	7.6	149
110	Defining the Extent of Irreversible Brain Ischemia Using Perfusion Computed Tomography. Cerebrovascular Diseases, 2011, 31, 238-245.	1.7	110
111	Acute stroke thrombolysis: time to dispense with the clock and move to tissue-based decision making?. Expert Review of Cardiovascular Therapy, 2011, 9, 451-461.	1.5	17
112	Ischemic Lesion Growth in Patients with aÂPersistent Target Mismatch After Large Vessel Occlusion. Clinical Neuroradiology, 0, , .	1.9	0