Zhe-Ling Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322889/publications.pdf

Version: 2024-02-01

76196 106150 5,393 139 40 65 citations h-index g-index papers 139 139 139 5745 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. Journal of Colloid and Interface Science, 2011, 353, 549-556.	5.0	426
2	Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation. Microporous and Mesoporous Materials, 2013, 180, 114-122.	2.2	218
3	Antibacterial activity and mechanism of action of $\hat{l}\mu$ -poly-l-lysine. Biochemical and Biophysical Research Communications, 2013, 439, 148-153.	1.0	197
4	Ultra-high surface area and nitrogen-rich porous carbons prepared by a low-temperature activation method with superior gas selective adsorption and outstanding supercapacitance performance. Chemical Engineering Journal, 2019, 355, 309-319.	6.6	179
5	Simultaneous and efficient removal of Cr(VI) and methyl orange on LDHs decorated porous carbons. Chemical Engineering Journal, 2018, 352, 306-315.	6.6	167
6	Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation. Nature Communications, 2022, 13, 200.	5 . 8	157
7	Optimizing Pore Space for Flexible-Robust Metal–Organic Framework to Boost Trace Acetylene Removal. Journal of the American Chemical Society, 2020, 142, 9744-9751.	6.6	154
8	Controllable synthesis of bifunctional porous carbon for efficient gas-mixture separation and high-performance supercapacitor. Chemical Engineering Journal, 2018, 348, 57-66.	6.6	125
9	A new choice of polymer precursor for solvent-free method: Preparation of N-enriched porous carbons for highly selective CO2 capture. Chemical Engineering Journal, 2019, 355, 963-973.	6.6	119
10	The high-performance and mechanism of P-doped activated carbon as a catalyst for air-cathode microbial fuel cells. Journal of Materials Chemistry A, 2015, 3, 21149-21158.	5.2	102
11	Novel Two-Dimensional Magnetic Titanium Carbide for Methylene Blue Removal over a Wide pH Range: Insight into Removal Performance and Mechanism. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24027-24036.	4.0	98
12	Enhanced Cr(VI) removal by polyethylenimine- and phosphorus-codoped hierarchical porous carbons. Journal of Colloid and Interface Science, 2018, 523, 110-120.	5.0	94
13	Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal–organic framework. Journal of Colloid and Interface Science, 2014, 430, 78-84.	5.0	84
14	Hydrogenative Ring-Rearrangement of Biobased Furanic Aldehydes to Cyclopentanone Compounds over Pd/Pyrochlore by Introducing Oxygen Vacancies. ACS Catalysis, 2020, 10, 7355-7366.	5.5	81
15	Adsorption Equilibria of CO ₂ , CH ₄ , N ₂ , O ₂ , and Ar on High Silica Zeolites. Journal of Chemical & Data, 2011, 56, 4017-4023.	1.0	73
16	Facile synthesis of hierarchical MoS ₂ –carbon microspheres as a robust anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 9653-9660.	5.2	73
17	Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions. Bioresource Technology, 2014, 170, 454-461.	4.8	70
18	Unprecedented performance of N-doped activated hydrothermal carbon towards C ₂ H ₆ /CH ₄ , CO ₂ /CH ₄ , and CO ₂ /H _{4, 2016, 4, 2263-2276.}	5.2	70

#	Article	IF	Citations
19	A hierarchical glucose-intercalated NiMn-G-LDH@NiCo ₂ S ₄ core–shell structure as a binder-free electrode for flexible all-solid-state asymmetric supercapacitors. Nanoscale, 2020, 12, 1852-1863.	2.8	70
20	Nitrogen-rich microporous carbons for highly selective separation of light hydrocarbons. Journal of Materials Chemistry A, 2016, 4, 13957-13966.	5.2	64
21	Highly Selective and Reversible Sulfur Dioxide Adsorption on a Microporous Metal–Organic Framework via Polar Sites. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10680-10688.	4.0	64
22	Facile and low-temperature strategy to prepare hollow ZIF-8/CNT polyhedrons as high-performance lithium-sulfur cathodes. Chemical Engineering Journal, 2021, 404, 126579.	6.6	63
23	Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 256-263.	2.0	58
24	Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of $17\hat{l}^2$ -estradiol. Journal of Chromatography A, 2016, 1442, 1-11.	1.8	58
25	Scalable strategy to fabricate single Cu atoms coordinated carbons for efficient electroreduction of CO2 to CO. Carbon, 2020, 168, 528-535.	5.4	57
26	Ultramicroporous carbons with extremely narrow pore size distribution via in-situ ionic activation for efficient gas-mixture separation. Chemical Engineering Journal, 2019, 375, 121931.	6.6	54
27	Synergistic binding sites in a hybrid ultramicroporous material for one-step ethylene purification from ternary C ₂ hydrocarbon mixtures. Science Advances, 2022, 8, .	4.7	53
28	Adsorption Configuration-Determined Selective Hydrogenative Ring Opening and Ring Rearrangement of Furfural over Metal Phosphate. ACS Catalysis, 2021, 11, 6406-6415.	5.5	52
29	Functional molecules regulated and intercalated nickel-cobalt LDH nano-sheets on carbon fiber cloths as an advanced free-standing electrode for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019, 321, 134708.	2.6	51
30	Double-metal cyanide-supported Pd catalysts for highly efficient hydrogenative ring-rearrangement of biomass-derived furanic aldehydes to cyclopentanone compounds. Journal of Catalysis, 2019, 378, 201-208.	3.1	51
31	Sulfonic acid functionalized hydrophobic mesoporous biochar: Design, preparation and acid-catalytic properties. Fuel, 2019, 240, 270-277.	3.4	51
32	Efficient SO ₂ Removal Using a Microporous Metal–Organic Framework with Molecular Sieving Effect. Industrial & Damp; Engineering Chemistry Research, 2020, 59, 874-882.	1.8	51
33	Algae-derived N-doped porous carbons with ultrahigh specific surface area for highly selective separation of light hydrocarbons. Chemical Engineering Journal, 2020, 381, 122731.	6.6	49
34	Boosting CO ₂ -to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. Journal of Materials Chemistry A, 2021, 9, 1705-1712.	5.2	49
35	Benzenesulfonic acid functionalized hydrophobic mesoporous biochar as an efficient catalyst for the production of biofuel. Applied Catalysis A: General, 2019, 580, 178-185.	2.2	47
36	Highly efficient hydrogenative ring-rearrangement of furanic aldehydes to cyclopentanone compounds catalyzed by noble metals/MIL-MOFs. Applied Catalysis A: General, 2019, 575, 152-158.	2.2	47

#	Article	IF	CITATIONS
37	Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO ₂ Capture from Flue Gases and Natural Gas Upgrading. Environmental Science & Environmental S	4.6	46
38	Influence of phenolic compounds on physicochemical and functional properties of protein isolate from Cinnamomum camphora seed kernel. Food Hydrocolloids, 2020, 102, 105612.	5.6	44
39	A versatile synthesis of metal–organic framework-derived porous carbons for CO ₂ capture and gas separation. Journal of Materials Chemistry A, 2016, 4, 19095-19106.	5.2	43
40	Highly Efficient Alkylation Using Hydrophobic Sulfonic Acid-Functionalized Biochar as a Catalyst for Synthesis of High-Density Biofuels. ACS Sustainable Chemistry and Engineering, 2019, 7, 14973-14981.	3.2	43
41	Antifungal activity and mechanism of monocaprin against food spoilage fungi. Food Control, 2018, 84, 561-568.	2.8	41
42	Facile preparation of N and O-rich porous carbon from palm sheath for highly selective separation of CO2/CH4/N2 gas-mixture. Chemical Engineering Journal, 2020, 399, 125812.	6.6	41
43	Covalent modification by phenolic extract improves the structural properties and antioxidant activities of the protein isolate from Cinnamomum camphora seed kernel. Food Chemistry, 2021, 352, 129377.	4.2	41
44	Camphor Tree Seed Kernel Oil Reduces Body Fat Deposition and Improves Blood Lipids in Rats. Journal of Food Science, 2015, 80, H1912-7.	1.5	40
45	Effects of Longâ€Chain and Mediumâ€Chain Fatty Acids on Apoptosis and Oxidative Stress in Human Liver Cells with Steatosis. Journal of Food Science, 2016, 81, H794-800.	1.5	37
46	<i>Cinnamomum camphora</i> Seed Kernel Oil Ameliorates Oxidative Stress and Inflammation in Dietâ€Induced Obese Rats. Journal of Food Science, 2016, 81, H1295-300.	1.5	35
47	1-Butyl-3-methylimidazolium hydrogen sulfate catalyzed in-situ transesterification of Nannochloropsis to fatty acid methyl esters. Energy Conversion and Management, 2017, 132, 213-220.	4.4	35
48	Functionalized metal–organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural. Chinese Journal of Chemical Engineering, 2021, 33, 167-174.	1.7	35
49	Effects of Nanoporous Carbon Derived from Microalgae and Its CoO Composite on Capacitance. ACS Applied Materials & Derived From Microalgae and Its CoO Composite on Capacitance. ACS Applied Materials & Derived From Microalgae and Its CoO Composite on Capacitance. ACS Applied Materials & Derived From Microalgae and Its CoO Composite on Capacitance. ACS	4.0	33
50	Hydrogen-Catalyzed Acid Transformation for the Hydration of Alkenes and Epoxy Alkanes over Co–N Frustrated Lewis Pair Surfaces. Journal of the American Chemical Society, 2021, 143, 21294-21301.	6.6	33
51	Polyfuran-Derived Microporous Carbons for Enhanced Adsorption of CO ₂ and CH ₄ . Langmuir, 2015, 31, 9845-9852.	1.6	32
52	Enzymatic production of trans-free shortening from coix seed oil, fully hydrogenated palm oil and Cinnamomum camphora seed oil. Food Bioscience, 2018, 22, 1-8.	2.0	32
53	In situ transformation of LDH into hollow cobalt-embedded and N-doped carbonaceous microflowers as polysulfide mediator for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 385, 123457.	6.6	31
54	Modulation of surface properties on cobalt phosphide for high-performance ambient ammonia electrosynthesis. Applied Catalysis B: Environmental, 2022, 303, 120874.	10.8	31

#	Article	IF	CITATIONS
55	Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device. Journal of Alloys and Compounds, 2021, 858, 157652.	2.8	29
56	Ultramicroporous carbon granules with narrow pore size distribution for efficient CH ₄ separation from coalâ€bed gases. AICHE Journal, 2021, 67, e17281.	1.8	29
57	Stability and Bioaccessibility of Fucoxanthin in Nanoemulsions Prepared from Pinolenic Acid-contained Structured Lipid. International Journal of Food Engineering, 2017, 13, .	0.7	28
58	In Vitro Antibacterial Activity and Mechanism of Monocaprylin against Escherichia coli and Staphylococcus aureus. Journal of Food Protection, 2018, 81, 1988-1996.	0.8	28
59	One-Step Chemical Vapor Deposition Synthesis of 3D N-doped Carbon Nanotube/N-doped Graphene Hybrid Material on Nickel Foam. Nanomaterials, 2018, 8, 700.	1.9	28
60	Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis. International Journal of Food Sciences and Nutrition, 2016, 67, 288-297.	1.3	27
61	Efficacy of oral <i>Bifidobacterium bifidum</i> ATCC 29521 on microflora and antioxidant in mice. Canadian Journal of Microbiology, 2016, 62, 249-262.	0.8	27
62	Characterization of novel exopolysaccharide of Enterococcus faecium WEFA23 from infant and demonstration of its in vitro biological properties. International Journal of Biological Macromolecules, 2019, 128, 710-717.	3.6	27
63	MOF-Encapsulating Metal–Acid Interfaces for Efficient Catalytic Hydrogenolysis of Biomass-Derived Aromatic Aldehydes. ACS Sustainable Chemistry and Engineering, 2021, 9, 11127-11136.	3.2	27
64	Immobilization of lipase on \hat{l}^2 -cyclodextrin grafted and aminopropyl-functionalized chitosan/Fe3O4 magnetic nanocomposites: An innovative approach to fruity flavor esters esterification. Food Chemistry, 2022, 366, 130616.	4.2	27
65	Effect of nitrogen group on selective separation of CO2/N2 in porous polystyrene. Chemical Engineering Journal, 2014, 256, 390-397.	6.6	26
66	Production, purification and biochemical characterisation of a novel lipase from a newly identified lipolytic bacterium <i>Staphylococcus caprae</i> NCU S6. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 249-257.	2.5	26
67	Facile and Controllable Preparation of Ultramicroporous Biomass-Derived Carbons and Application on Selective Adsorption of Gas-mixtures. Industrial & Engineering Chemistry Research, 2018, 57, 14191-14201.	1.8	25
68	Ethanol extracts from Cinnamomum camphora seed kernel: Potential bioactivities as affected by alkaline hydrolysis and simulated gastrointestinal digestion. Food Research International, 2020, 137, 109363.	2.9	25
69	Functionalized Biochar with Superacidity and Hydrophobicity as a Highly Efficient Catalyst in the Synthesis of Renewable High-Density Fuels. ACS Sustainable Chemistry and Engineering, 2020, 8, 7785-7794.	3.2	24
70	Lauric Triglyceride Ameliorates High-Fat-Diet-Induced Obesity in Rats by Reducing Lipogenesis and Increasing Lipolysis and \hat{I}^2 -Oxidation. Journal of Agricultural and Food Chemistry, 2021, 69, 9157-9166.	2.4	24
71	Water-mediated hydrogen spillover accelerates hydrogenative ring-rearrangement of furfurals to cyclic compounds. Journal of Catalysis, 2022, 405, 363-372.	3.1	24
72	Temperature-Dependent Lipid Conversion and Nonlipid Composition of Microalgal Hydrothermal Liquefaction Oils Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Bioenergy Research, 2015, 8, 1962-1972.	2.2	23

#	Article	IF	Citations
73	Secondary Metabolites from Marine <i>Micromonospora</i> : Chemistry and Bioactivities. Chemistry and Biodiversity, 2020, 17, e2000024.	1.0	23
74	Mechanism and Nature of Inhibition of Trypsin by Ligupurpuroside A, a Ku-Ding Tea Extract, Studied by Spectroscopic and Docking Methods. Food Biophysics, 2017, 12, 78-87.	1.4	22
75	Characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for applications in detergent industry and biodegradation of 2,4-D butyl ester. International Journal of Biological Macromolecules, 2021, 176, 126-136.	3.6	22
76	Efficient Xe/Kr separation on two Metal-Organic frameworks with distinct pore shapes. Separation and Purification Technology, 2021, 274, 119132.	3.9	22
77	Transesterification of camelina sativa oil with supercritical alcohol mixtures. Energy Conversion and Management, 2015, 101, 402-409.	4.4	21
78	Double-metal cyanide as an acid and hydrogenation catalyst for the highly selective ring-rearrangement of biomass-derived furfuryl alcohol to cyclopentenone compounds. Green Chemistry, 2020, 22, 2549-2557.	4.6	21
79	Facile Preparation of Biomass-Derived Mesoporous Carbons for Highly Efficient and Selective SO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 14929-14937.	1.8	20
80	Boosting electrochemical CO2 reduction on ternary heteroatoms-doped porous carbon. Chemical Engineering Journal, 2021, 425, 131661.	6.6	20
81	Ce–Fe-modified zeolite-rich tuff to remove Ba2+-like 226Ra2+ in presence of As(V) and Fâ^' from aqueous media as pollutants of drinking water. Journal of Hazardous Materials, 2016, 302, 341-350.	6.5	19
82	Enhancing the Performance of Motive Power Lead-Acid Batteries by High Surface Area Carbon Black Additives. Applied Sciences (Switzerland), 2019, 9, 186.	1.3	19
83	Antibacterial activity and action mechanism of microencapsulated dodecyl gallate with methyl- \hat{l}^2 -cyclodextrin. Food Control, 2020, 109, 106953.	2.8	19
84	Enhanced performance and electrocatalytic kinetics on porous carbon-coated SnS microflowers as efficient Li–S battery cathodes. Electrochimica Acta, 2020, 343, 136148.	2.6	19
85	Graphitic carbon embedded FeNi nanoparticles for efficient deoxygenation of stearic acid without using hydrogen and solvent. Fuel, 2021, 292, 120248.	3.4	19
86	<i>Cinnamomum camphora</i> Seed Kernel Oil Improves Lipid Metabolism and Enhances β3â€Adrenergic Receptor Expression in Dietâ€Induced Obese Rats. Lipids, 2016, 51, 693-702.	0.7	18
87	Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers. Journal of Materials Chemistry A, 2020, 8, 20677-20686.	5.2	18
88	Pyrochlore/Al2O3 composites supported Pd for the selective synthesis of cyclopentanones from biobased furfurals. Applied Catalysis A: General, 2021, 612, 117985.	2.2	18
89	Synergistic effects of monocaprin and carvacrol against Escherichia coli O157:H7 and Salmonella Typhimurium in chicken meat preservation. Food Control, 2022, 132, 108480.	2.8	18
90	One-step synthesis of hierarchical metal oxide nanosheet/carbon nanotube composites by chemical vapor deposition. Journal of Materials Science, 2019, 54, 1291-1303.	1.7	17

#	Article	IF	CITATIONS
91	Fabrication of dual-hollow heterostructure of Ni2CoS4 sphere and nanotubes as advanced electrode for high-performance flexible all-solid-state supercapacitors. Journal of Colloid and Interface Science, 2020, 564, 313-321.	5.0	17
92	Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes. Journal of Materials Research, 2020, 35, 1205-1213.	1.2	17
93	Influence of phenolic compounds on the structural characteristics, functional properties and antioxidant activities of Alcalase-hydrolyzed protein isolate from Cinnamomum camphora seed kernel. LWT - Food Science and Technology, 2021, 148, 111799.	2.5	17
94	Enhancement of Low-field Magnetoresistance in Self-Assembled Epitaxial La0.67Ca0.33MnO3:NiO and La0.67Ca0.33MnO3:Co3O4 Composite Films via Polymer-Assisted Deposition. Scientific Reports, 2016, 6, 26390.	1.6	16
95	Robust Ultramicroporous Metal–Organic Framework with Rich Hydroxyl-Decorated Channel Walls for Highly Selective Noble Gas Separation. Journal of Chemical & Deceing Data, 2020, 65, 4018-4023.	1.0	16
96	Chemical immobilization of amino acids into robust metal–organic framework for efficient SO ₂ removal. AICHE Journal, 2021, 67, e17300.	1.8	16
97	Expression and characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for application in enhancing fatty acids flavor release for low-fat cheeses. Food Chemistry, 2022, 368, 130868.	4.2	16
98	Effects of preheat treatment and polyphenol grafting on the structural, emulsifying and rheological properties of protein isolate from Cinnamomum camphora seed kernel. Food Chemistry, 2022, 377, 132044.	4.2	16
99	Green synthesis of polydopamine functionalized magnetic mesoporous biochar for lipase immobilization and its application in interesterification for novel structured lipids production. Food Chemistry, 2022, 379, 132148.	4.2	16
100	Medium and Long Chain Fatty Acids Differentially Modulate Apoptosis and Release of Inflammatory Cytokines in Human Liver Cells. Journal of Food Science, 2016, 81, H1546-52.	1.5	15
101	Synthesis of renewable C–C cyclic compounds and high-density biofuels using 5-hydromethylfurfural as a reactant. Green Chemistry, 2020, 22, 2468-2473.	4.6	14
102	Direct growth of mesoporous anatase TiO ₂ on nickel foam by soft template method as binder-free anode for lithium-ion batteries. RSC Advances, 2014, 4, 48938-48942.	1.7	13
103	Facile one-step synthesis of N-doped carbon nanotubes/N-doped carbon nanofibers hierarchical composites by chemical vapor deposition. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	13
104	Antibacterial activity and membrane-disrupting mechanism of monocaprin against Escherichia coli and its application in apple and carrot juices. LWT - Food Science and Technology, 2020, 131, 109794.	2.5	12
105	lodineâ€Modified Pd Catalysts Promote the Bifunctional Catalytic Synthesis of 2,5â€Hexanedione from C ₆ Furan Aldehydes. ChemSusChem, 2022, 15, .	3.6	12
106	Facilely prepared, N, O-codoped nanosheet derived from pre-functionalized polymer as supercapacitor electrodes. Chemical Physics, 2018, 506, 17-25.	0.9	11
107	A N-doped graphene–cobalt nickel sulfide aerogel as a sulfur host for lithium–sulfur batteries. RSC Advances, 2019, 9, 32247-32257.	1.7	11
108	Highly Controllable Hydrogenative Ring Rearrangement and Complete Hydrogenation Of Biobased Furfurals over Pd/La ₂ B ₂ O ₇ (B=Ti, Zr, Ce). ChemCatChem, 2021, 13, 4549-4556.	1.8	11

7

#	Article	IF	CITATIONS
109	Synthesis and characterization of partially hydrolyzed polyacrylamide nanocomposite weak gels with high molecular weights. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
110	A Stable Zn-Based Metal–Organic Framework as an Efficient Catalyst for Carbon Dioxide Cycloaddition and Alcoholysis at Mild Conditions. Catalysis Letters, 2020, 150, 1408-1417.	1.4	9
111	High Dietary Intervention of Lauric Triglyceride Might be Harmful to Its Improvement of Cholesterol Metabolism in Obese Rats. Journal of Agricultural and Food Chemistry, 2021, 69, 4453-4463.	2.4	9
112	Conformational changes in bovine \hat{l} ±-lactalbumin and \hat{l} 2-lactoglobulin evoked by interaction with C18 unsaturated fatty acids provide insights into increased allergic potential. Food and Function, 2020, 11, 9240-9251.	2.1	8
113	Assessment of the effect of ethanol extracts from <i>Cinnamomum camphora</i> seed kernel on intestinal inflammation using simulated gastrointestinal digestion and a Caco-2/RAW264.7 co-culture system. Food and Function, 2021, 12, 9197-9210.	2.1	8
114	Promoted Hydrogenolysis of Furan Aldehydes to 2,5â€Dimethylfuran by Defect Engineering on Pd/NiCo 2 O 4. ChemSusChem, 2022, , .	3.6	8
115	Preparation and characterization of poly(MMA-EGDMA-AMPS) microspheres by soap-free emulsion polymerization. Journal of Polymer Engineering, 2015, 35, 847-857.	0.6	7
116	Mutagenesis and characterization of a Bacillus amyloliquefaciens strain for Cinnamomum camphora seed kernel oil extraction by aqueous enzymatic method. AMB Express, 2017, 7, 154.	1.4	7
117	Preparation of Hydrophobic Acidic Metal–Organic Frameworks and Their Application for 5-Hydroxymethylfurfural Synthesis. Industrial & Engineering Chemistry Research, 2020, 59, 22068-22078.	1.8	7
118	Delicate Tuning of the Ni/Co Ratio in Bimetal Layered Double Hydroxides for Efficient N ₂ Electroreduction. ChemSusChem, 2022, 15, e202200127.	3.6	7
119	Bifunctional Role of Hydrogen in Aqueous Hydrogenative Ring Rearrangement of Furfurals over Co@Co-NC. ACS Sustainable Chemistry and Engineering, 2022, 10, 7321-7329.	3.2	7
120	Oral administration of <i>Bifidobacterim bifidum </i> for modulating microflora, acid and bile resistance, and physiological indices in mice. Canadian Journal of Microbiology, 2015, 61, 155-163.	0.8	6
121	Screening and identification of a Bacillus amyloliquefaciens strain for aqueous enzymatic extraction of medium-chain triglycerides. Food Control, 2017, 78, 24-32.	2.8	6
122	Nickel Nanoparticles with Narrow Size Distribution Confined in Nitrogen-Doped Carbon for Efficient Reduction of CO2 to CO. Catalysis Letters, 2022, 152, 600-609.	1.4	6
123	Improving effect of phytase treatment on the functional properties and in vitro digestibility of protein isolate from Cinnamomum camphora seed kernel. LWT - Food Science and Technology, 2022, 155, 112948.	2.5	6
124	Differentially-expressed genes in Candida albicans exposed to $\hat{l}\mu$ -poly-l-lysine. Biotechnology Letters, 2013, 35, 2147-2153.	1.1	5
125	Selective Synthesis of Bioderived Dibenzofurans and Bicycloalkanes from a Cellulose-Based Route. ACS Sustainable Chemistry and Engineering, 2021, 9, 6748-6755.	3.2	5
126	Effect of in vitro digestion of Cudrania cochinchinensis root extracts on phenolic compounds, bioactivity, bioaccessibility and cytotoxicity on HepG2 cells. European Food Research and Technology, 2021, 247, 2945-2959.	1.6	5

#	Article	IF	CITATIONS
127	Synergistic effect of NiCo alloy and NiCoS integrated with N doped carbon for superior rate and ultralong-lifespan lithium sulfur batteries. Journal of Alloys and Compounds, 2022, 905, 164175.	2.8	5
128	Dietary Linolenic Acid Increases Sensitizing and Eliciting Capacities of Cow's Milk Whey Proteins in BALB/c Mice. Nutrients, 2022, 14, 822.	1.7	5
129	Effects of medium―and long•hain fatty acids on acetaminophen―or rifampicin―nduced hepatocellular injury. Food Science and Nutrition, 2020, 8, 3590-3601.	1.5	4
130	Antioxidant, antidiabetic and identification of phenolic constituents from Potentilla discolor Bge European Food Research and Technology, 2020, 246, 2007-2016.	1.6	3
131	Fabrication of vertically aligned N-doped carbon nanotube arrays on vermiculite by horizonal chemical vapor deposition. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 202-211.	1.0	3
132	Construction and in vitro digestibility evaluation of a novel human milk fat substitute rich in structured triglycerides. Food Science and Technology, 0, 42, .	0.8	3
133	Growth of U-Shaped Graphene Domains on Copper Foil by Chemical Vapor Deposition. Materials, 2019, 12, 1887.	1.3	2
134	Large scale synthesis of carbon nanopearl chains by chemical vapor deposition. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 773-778.	1.0	2
135	Controlled Synthesis of Dibenzenetriol and Diquinone from 1,2,4-Benzenetriol by Catalytic Aerobic Oxidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 3255-3263.	3.2	2
136	Controllable synthesis of N-doped aligned carbon nanotubes from melamine-based carbon by water-assisted chemical vapor deposition. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 729-735.	1.0	1
137	Synergistic engineering of fluorine doping and oxygen vacancies towards high-energy and long-lifespan flexible solid-state asymmetric supercapacitor. lonics, 2021, 27, 2649-2658.	1.2	1
138	Synthesis of Three-Dimensional Nanocarbon Hybrids by Chemical Vapor Deposition. , 0, , .		0
139	Interaction mechanism of a natural medicine product helicid with a typical digestive enzyme trypsin. Spectroscopy Letters, 2021, 54, 99-112.	0.5	O