Stefania Loreti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322478/publications.pdf

Version: 2024-02-01

687363 794594 30 434 13 19 citations h-index g-index papers 33 33 33 474 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mass Spectrometry-Based Targeted Lipidomics and Supervised Machine Learning Algorithms in Detecting Disease, Cultivar, and Treatment Biomarkers in Xylella fastidiosa subsp. pauca-Infected Olive Trees. Frontiers in Plant Science, 2022, 13, 833245.	3.6	1
2	Intra-Laboratory Evaluation of DNA Extraction Methods and Assessment of a Droplet Digital PCR for the Detection of XanthomonasÂcitri pv. citri on Different Citrus Species. International Journal of Molecular Sciences, 2022, 23, 4975.	4.1	1
3	Further In Vitro Assessment and Mid-Term Evaluation of Control Strategy of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens, 2021, 10, 85.	2.8	19
4	Progress towards Sustainable Control of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens, 2021, 10, 668.	2.8	20
5	Nanopore sequencing for the detection and identification of <i>Xylella fastidiosa</i> subspecies and sequence types from naturally infected plant material. Plant Pathology, 2021, 70, 1860-1870.	2.4	13
6	<i>In vitro</i> antimicrobial activity of plant extracts against <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> causal agent of bacterial canker in kiwifruit. Plant Biosystems, 2020, 154, 100-106.	1.6	10
7	Antibacterial Activity of Essential Oils and Trametes versicolor Extract against Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum for Seed Treatment and Development of a Rapid In Vivo Assay. Antibiotics, 2020, 9, 628.	3.7	17
8	In vitro and in planta screening of compounds for the control of Pseudomonas syringae pv. actinidiae in Actinidia chinensis var. chinensis. European Journal of Plant Pathology, 2020, 158, 829-848.	1.7	8
9	Xylella fastidiosa subsp. paucaÂand olive produced lipids moderate the switch adhesive versus non-adhesive state and viceversa. PLoS ONE, 2020, 15, e0233013.	2.5	11
10	Sonication-Assisted Production of Fosetyl-Al Nanocrystals: Investigation of Human Toxicity and In Vitro Antibacterial Efficacy against Xylella fastidiosa. Nanomaterials, 2020, 10, 1174.	4.1	16
11	Lipid Profile of Xylella fastidiosa Subsp. pauca Associated With the Olive Quick Decline Syndrome. Frontiers in Microbiology, 2018, 9, 1839.	3.5	7
12	The diagnosis of plant pathogenic bacteria a state of art. Frontiers in Bioscience - Elite, 2018, 10, 449-460.	1.8	13
13	Performance of diagnostic tests for the detection and identification of Pseudomonas syringae pv. actinidiae (Psa) from woody samples. European Journal of Plant Pathology, 2018, 152, 657-676.	1.7	13
14	Experience of the Latium region (Central Italy) as a pest-free area for monitoring of Xylella fastidiosa: distinctive features of molecular diagnostic methods. European Journal of Plant Pathology, 2017, 148, 557-566.	1.7	25
15	Detection and identification of <i><scp>X</scp>anthomonas arboricola</i> pv. <i>pruni</i> from symptomless plant material: results of an Italian test performance study. EPPO Bulletin, 2015, 45, 41-51.	0.8	6
16	Realâ€time and qualitative <scp>PCR</scp> for detecting <i><scp>P</scp>seudomonas syringae</i> vi>actinidiae isolates causing recent outbreaks of kiwifruit bacterial canker. Plant Pathology, 2014, 63, 264-276.	2.4	54
17	NPR1-like genes from cDNA of rosaceous trees: cloning strategy and genetic variation. Tree Genetics and Genomes, 2008, 4, 49-63.	1.6	6
18	Detection and Identification of <i>Brenneria nigrifluens</i> , the Causal Agent of the Shallow Bark Canker of Walnut by, PCR Amplification. Journal of Phytopathology, 2008, 156, 464-469.	1.0	19

#	Article	IF	CITATIONS
19	Bacterial wilt, caused by Ralstonia solanacearum, on tomato in Italy. Plant Pathology, 2008, 57, 368-368.	2.4	3
20	FACTORS AFFECTING IN VITRO EVALUATION OF RESISTANCE TO ERWINIA AMYLOVORA IN PEAR GENOTYPES. Acta Horticulturae, 2008, , 885-890.	0.2	0
21	APPROACH TO THE STUDY OF INDUCTION OF RESISTANCE IN PYRUS COMMUNIS TO E. AMYLOVORA: DEVELOPMENT OF BIOASSAYS AND CLONING OF FRAGMENTS OF NPR1-LIKE GENES. Acta Horticulturae, 2006, , 495-508.	0.2	1
22	Pseudomonas syringae pv. coryli, the Causal Agent of Bacterial Twig Dieback of Corylus avellana. Phytopathology, 2005, 95, 1316-1324.	2.2	37
23	A NATIONAL PROJECT ON ORGANIC HAZELNUT PRODUCTION IN ITALY. Acta Horticulturae, 2005, , 327-330.	0.2	4
24	Rapid and Specific Detection of Virulent Pseudomonas avellanae Strains by PCR Amplification. European Journal of Plant Pathology, 2002, 108, 237-244.	1.7	15
25	Identification of hrp Genes, Encoding Harpin Protein, in Pseudomonas avellanae (Psallidas) Janse et al Journal of Phytopathology, 2001, 149, 219-226.	1.0	7
26	Investigation of Genomic Variability of Xanthomonas Arboricola Pv. juglandis by AFLP Analysis. European Journal of Plant Pathology, 2001, 107, 583-591.	1.7	34
27	Comparison of different diagnostic methods for detection of peach latent mosaic viroid. EPPO Bulletin, 1999, 29, 433-438.	0.8	21
28	OCCURRENCE OF VIROIDS IN TEMPERATE FRUIT TREES IN ITALY. Acta Horticulturae, 1998, , 555-560.	0.2	6
29	Identification and Characterization of an Italian Isolate of Pear Blister Canker Viroid. Journal of Phytopathology, 1997, 145, 541-544.	1.0	11
30	Occurrence of Peach Latent Mosaic Viroid (PLMVd) on Plum in Italy. Plant Disease, 1997, 81, 423-423.	1.4	15