Daniel Bernstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322459/publications.pdf

Version: 2024-02-01

87843 62565 7,100 122 38 80 citations h-index g-index papers 127 127 127 11342 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of Drug Transporter Genomic Variants and Inhibitors That Protect Against Doxorubicin-Induced Cardiotoxicity. Circulation, 2022, 145, 279-294.	1.6	46
2	Genome-Wide De Novo Variants in Congenital Heart Disease Are Not Associated With Maternal Diabetes or Obesity. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003500.	1.6	8
3	Neither cardiac mitochondrial DNA variation nor copy number contribute to congenital heart disease risk. American Journal of Human Genetics, 2022, 109, 961-966.	2.6	5
4	Hybrid management of dysphagia lusoria in a boy with Duchenne's muscular dystrophy. Cardiology in the Young, 2022, , 1-3.	0.4	0
5	Mitochondrial Quality Control in the Heart: The Balance between Physiological and Pathological Stress. Biomedicines, 2022, 10, 1375.	1.4	4
6	Association of Damaging Variants in Genes With Increased Cancer Risk Among Patients With Congenital Heart Disease. JAMA Cardiology, 2021, 6, 457.	3.0	34
7	\hat{l}^2 2-Adrenergic Signaling Modulates Mitochondrial Function and Morphology in Skeletal Muscle in Response to Aerobic Exercise. Cells, 2021, 10, 146.	1.8	15
8	Transcriptomic and Functional Analyses of Mitochondrial Dysfunction in Pressure Overloadâ€Induced Right Ventricular Failure. Journal of the American Heart Association, 2021, 10, e017835.	1.6	12
9	Comparison of combined heartâ€'liver vs heart-only transplantation in pediatric and young adult Fontan recipients. Journal of Heart and Lung Transplantation, 2021, 40, 298-306.	0.3	22
10	Impact of institutional routine surveillance endomyocardial biopsy frequency in the first year on rejection and graft survival in pediatric heart transplantation. Pediatric Transplantation, 2021, 25, e14035.	0.5	4
11	Hypertrophic cardiomyopathy \hat{l}^2 -cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
12	Clinical and hemodynamic characteristics of the pediatric failing Fontan. Journal of Heart and Lung Transplantation, 2021, 40, 1529-1539.	0.3	10
13	Improving Right Ventricular Function by Increasing BMP Signaling with FK506. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 272-287.	1.4	16
14	Dach1 Extends Artery Networks and Protects Against Cardiac Injury. Circulation Research, 2021, 129, 702-716.	2.0	28
15	RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell, 2021, 28, 2076-2089.e7.	5.2	36
16	Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation, 2021, 144, 1714-1731.	1.6	90
17	Coronary blood vessels from distinct origins converge to equivalent states during mouse and human development. ELife, 2021, 10, .	2.8	15
18	Editorial: Advances in Pediatric Cardiology 2020. Current Opinion in Pediatrics, 2020, 32, 625.	1.0	0

#	Article	IF	Citations
19	Patient-Specific Induced Pluripotent Stem Cells Implicate Intrinsic Impaired Contractility in Hypoplastic Left Heart Syndrome. Circulation, 2020, 142, 1605-1608.	1.6	33
20	Diagnosis and treatment of right ventricular dysfunction in congenital heart disease. Cardiovascular Diagnosis and Therapy, 2020, 10, 1625-1645.	0.7	11
21	Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Reports, 2020, 32, 107925.	2.9	198
22	4HNE Impairs Myocardial Bioenergetics in Congenital Heart Disease-Induced Right Ventricular Failure. Circulation, 2020, 142, 1667-1683.	1.6	14
23	Noncanonical WNT Activation in Human Right Ventricular Heart Failure. Frontiers in Cardiovascular Medicine, 2020, 7, 582407.	1.1	6
24	Systems Analysis Implicates WAVE2ÂComplex in the Pathogenesis ofÂDevelopmental Left-Sided ObstructiveÂHeart Defects. JACC Basic To Translational Science, 2020, 5, 376-386.	1.9	15
25	Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nature Genetics, 2020, 52, 769-777.	9.4	97
26	De Novo Damaging Variants, Clinical Phenotypes, and Post-Operative Outcomes in Congenital Heart Disease. Circulation Genomic and Precision Medicine, 2020, 13, e002836.	1.6	30
27	Rare genetic variation at transcription factor binding sites modulates local DNA methylation profiles. PLoS Genetics, 2020, 16, e1009189.	1.5	27
28	GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. ELife, 2020, 9, .	2.8	31
29	Stanford University School of Medicine. Academic Medicine, 2020, 95, S50-S53.	0.8	0
30	De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nature Communications, 2019, 10, 4722.	5.8	58
31	\hat{l}^2 -Cardiac myosin hypertrophic cardiomyopathy mutations release sequestered heads and increase enzymatic activity. Nature Communications, 2019, 10, 2685.	5.8	54
32	Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure. Nature Communications, 2019, 10, 2760.	5.8	22
33	Substantial Cardiovascular Morbidity in Adults With Lower-Complexity Congenital Heart Disease. Circulation, 2019, 139, 1889-1899.	1.6	81
34	On the Functional Assessment of Hypertrophic Cardiomyopathy-Causing Mutations in Human \hat{l}^2 -Cardiac Myosin and the Role of Myosin Binding Protein-C. Biophysical Journal, 2019, 116, 466a-467a.	0.2	0
35	Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2019, 130, 160-169.	0.9	101
36	Compassionate deactivation of ventricular assist devices in children: A survey of pediatric ventricular assist device clinicians' perspectives and practices. Pediatric Transplantation, 2019, 23, e13359.	0.5	18

3

#	Article	IF	CITATIONS
37	Stem cells. Current Opinion in Pediatrics, 2019, 31, 617-622.	1.0	О
38	Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nature Immunology, 2019, 20, 50-63.	7.0	304
39	Functional Assays to Screen and Dissect Genomic Hits. Circulation Genomic and Precision Medicine, 2018, 11, e002178.	1.6	18
40	Anthracycline Cardiotoxicity. Circulation Research, 2018, 122, 188-190.	2.0	31
41	Response by Bernstein to Letter Regarding Article, "Anthracycline Cardiotoxicity: Worrisome Enough to Have You Quaking?― Circulation Research, 2018, 122, e64-e65.	2.0	3
42	Renin-Angiotensin-Aldosterone System Inhibitors for Right Ventricular Dysfunction in Tetralogy of Fallot. Circulation, 2018, 137, 1472-1474.	1.6	7
43	New insights into mitral valve dystrophy: a Filamin-A genotype–phenotype and outcome study. European Heart Journal, 2018, 39, 1269-1277.	1.0	44
44	Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annual Review of Pharmacology and Toxicology, 2018, 58, 83-103.	4.2	89
45	Physiological Mitochondrial Fragmentation Is a Normal Cardiac Adaptation to Increased Energy Demand. Circulation Research, 2018, 122, 282-295.	2.0	90
46	Advances in pediatric cardiology 2018. Current Opinion in Pediatrics, 2018, 30, 599-600.	1.0	0
47	Dynamics of Viral and Host Immune Cell MicroRNA Expression during Acute Infectious Mononucleosis. Frontiers in Microbiology, 2018, 8, 2666.	1.5	10
48	Impact of Heart Transplantation on the Functional Status of US Children With End-Stage Heart Failure. Circulation, 2017, 135, 939-950.	1.6	15
49	Rehospitalization after pediatric heart transplantation: Incidence, indications, and outcomes. Pediatric Transplantation, 2017, 21, e12857.	0.5	11
50	Angiotensin-Converting Enzyme Inhibition Early After Heart Transplantation. Journal of the American College of Cardiology, 2017, 69, 2832-2841.	1.2	50
51	Pharmacogenomic screening for anthracyclineâ€induced cardiotoxicity in childhood cancer. British Journal of Clinical Pharmacology, 2017, 83, 1143-1145.	1.1	13
52	Induced pluripotent stem cell-derived cardiomyocytes: A platform for testing for drug cardiotoxicity. Progress in Pediatric Cardiology, 2017, 46, 2-6.	0.2	2
53	Thalidomide treatment prevents chronic graft rejection after aortic transplantation in rats - an experimental study. Transplant International, 2017, 30, 1181-1189.	0.8	3
54	Impact of the 18th birthday on waitlist outcomes among young adults listed for heart transplant: A regression discontinuity analysis. Journal of Heart and Lung Transplantation, 2017, 36, 1185-1191.	0.3	5

#	Article	IF	CITATIONS
55	Advances in paediatric cardiology 2017: the genetics of paediatric cardiovascular disease. Current Opinion in Pediatrics, 2017, 29, 511-512.	1.0	O
56	miR-21 is associated with fibrosis and right ventricular failure. JCI Insight, 2017, 2, .	2.3	31
57	Early-Onset Hypertrophic Cardiomyopathy Mutations Significantly Increase the Velocity, Force, and Actin-Activated ATPase Activity of Human \hat{l}^2 -Cardiac Myosin. Cell Reports, 2016, 17, 2857-2864.	2.9	69
58	Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 2016, 22, 547-556.	15.2	573
59	Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium, 2016, 60, 88-101.	1.1	71
60	Regenerative medicine - From stem cell biology to clinical trials for pediatric heart failure. Progress in Pediatric Cardiology, 2016, 43, 87-89.	0.2	0
61	Nat1 Deficiency Is Associated with Mitochondrial Dysfunction and Exercise Intolerance in Mice. Cell Reports, 2016, 17, 527-540.	2.9	35
62	Recommendations for genetic testing to reduce the incidence of anthracyclineâ€induced cardiotoxicity. British Journal of Clinical Pharmacology, 2016, 82, 683-695.	1.1	188
63	iPSC-derived cardiomyocytes reveal abnormal TGF- \hat{l}^2 signalling in left ventricular non-compaction cardiomyopathy. Nature Cell Biology, 2016, 18, 1031-1042.	4.6	148
64	Advances in pediatric cardiology 2016. Current Opinion in Pediatrics, 2016, 28, 573-574.	1.0	1
65	Na ⁺ -sensitive elevation in blood pressure is ENaC independent in diet-induced obesity and insulin resistance. American Journal of Physiology - Renal Physiology, 2016, 310, F812-F820.	1.3	19
66	Epigenetic response to environmental stress: Assembly of BRG1–G9a/GLP–DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1772-1781.	1.9	53
67	Timeâ€dependent evolution of functional <i>vs.</i> remodeling signaling in induced pluripotent stem cellâ€derived cardiomyocytes and induced maturation with biomechanical stimulation. FASEB Journal, 2016, 30, 1464-1479.	0.2	58
68	De Novo and Rare Variants at Multiple Loci Support the Oligogenic Origins of Atrioventricular Septal Heart Defects. PLoS Genetics, 2016, 12, e1005963.	1.5	92
69	Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts, 2016, 6, 111-115.	0.7	55
70	Protein Corona Influences Cell–Biomaterial Interactions in Nanostructured Tissue Engineering Scaffolds. Advanced Functional Materials, 2015, 25, 4379-4389.	7.8	57
71	Long-term challenges in congenital heart disease. Current Opinion in Pediatrics, 2015, 27, 545-547.	1.0	0
72	Mitochondria shape cardiac metabolism. Science, 2015, 350, 1162-1163.	6.0	28

#	Article	IF	Citations
73	Task Force 8: Pediatric Cardiology Fellowship Training in Research and Scholarly Activity. Circulation, 2015, 132, e107-13.	1.6	6
74	Innovative tools in the individualized medical therapy for children with heart muscle disease. Progress in Pediatric Cardiology, 2015, 39, 37-41.	0.2	0
75	A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nature Genetics, 2015, 47, 1079-1084.	9.4	214
76	Molecular Mechanisms of Right Ventricular Failure. Circulation, 2015, 132, 1734-1742.	1.6	123
77	Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature, 2015, 525, 479-485.	13.7	402
78	Changes in Risk Profile Over Time in the Population of a Pediatric Heart Transplant Program. Annals of Thoracic Surgery, 2015, 100, 989-995.	0.7	8
79	[Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction. Biomaterials, 2015, 37, 289-298.	5.7	44
80	Abstract 248: Aberrant TGF \hat{l}^2 Signaling as an Etiology of Left Ventricular Non-compaction Cardiomyopathy. Circulation Research, 2015, 117, .	2.0	0
81	Use of bio-mimetic three-dimensional technology in therapeutics for heart disease. Bioengineered, 2014, 5, 193-197.	1.4	20
82	Circulating Cell-Free DNA Enables Noninvasive Diagnosis of Heart Transplant Rejection. Science Translational Medicine, 2014, 6, 241ra77.	5.8	388
83	Introduction to the Series. Circulation, 2014, 129, 112-114.	1.6	6
84	Patient-specific pluripotent stem cells in doxorubicin cardiotoxicity: A new window into personalized medicine. Progress in Pediatric Cardiology, 2014, 37, 23-27.	0.2	9
85	HLA desensitization with bortezomib in a highly sensitized pediatric patient. Pediatric Transplantation, 2014, 18, E280-2.	0.5	18
86	A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 2014, 514, 102-106.	13.7	672
87	Multi-institutional Study of Outcomes After Pediatric Heart Transplantation: Candidate Gene Polymorphism Analysis of ABCC2. Journal of Pediatric Pharmacology and Therapeutics, 2014, 19, 16-24.	0.3	14
88	Lower socioeconomic status is associated with worse outcomes after both listing and transplanting children with heart failure. Pediatric Transplantation, 2013, 17, 573-581.	0.5	36
89	FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. Journal of Clinical Investigation, 2013, 123, 3600-3613.	3.9	354
90	Renal function and genetic polymorphisms in pediatric heart transplant recipients. Journal of Heart and Lung Transplantation, 2012, 31, 1003-1008.	0.3	9

#	Article	IF	Citations
91	Use of the Impella 5.0 as a bridge from ECMO to implantation of the HeartMate II left ventricular assist device in a pediatric patient. Pediatric Transplantation, 2012, 16, 205-206.	0.5	19
92	Clinical usefulness of a novel C1q assay to detect immunoglobulin G antibodies capable of fixing complement in sensitized pediatric heart transplant patients. Journal of Heart and Lung Transplantation, 2011, 30, 158-163.	0.3	196
93	\hat{l}^2 2-adrenergic receptors mediate cardioprotection through crosstalk with mitochondrial cell death pathways. Journal of Molecular and Cellular Cardiology, 2011, 51, 781-789.	0.9	37
94	Gene Polymorphisms Impact the Risk of Rejection With Hemodynamic Compromise: A Multicenter Study. Transplantation, 2011, 91, 1326-1332.	0.5	21
95	New directions in basic research in hypertrophy and heart failure: Relevance for pediatric cardiology. Progress in Pediatric Cardiology, 2011, 32, 5-9.	0.2	7
96	The role of \hat{l}^2 -adrenergic receptors in heart failure: Differential regulation of cardiotoxicity and cardioprotection. Progress in Pediatric Cardiology, 2011, 31, 35-38.	0.2	53
97	Association of genetic polymorphisms and risk of late post-transplantation infection in pediatric heart recipients. Journal of Heart and Lung Transplantation, 2010, 29, 1342-1351.	0.3	12
98	Association of Left Ventricular Dilation at Listing for Heart Transplant With Postlisting and Early Posttransplant Mortality in Children With Dilated Cardiomyopathy. Circulation: Heart Failure, 2009, 2, 591-598.	1.6	29
99	Genotypic Variation and Phenotypic Characterization of Granzyme B Gene Polymorphisms. Transplantation, 2009, 87, 1801-1806.	0.5	9
100	Genetic Polymorphisms Impact the Risk of Acute Rejection in Pediatric Heart Transplantation: A Multi-Institutional Study. Transplantation, 2008, 85, 1632-1639.	0.5	56
101	Indications for Heart Transplantation in Pediatric Heart Disease. Circulation, 2007, 115, 658-676.	1.6	269
102	Gene Expression Profiling Distinguishes a Molecular Signature for Grade 1B Mild Acute Cellular Rejection in Cardiac Allograft Recipients. Journal of Heart and Lung Transplantation, 2007, 26, 1270-1280.	0.3	34
103	Disparate Distribution of 16 Candidate Single Nucleotide Polymorphisms Among Racial and Ethnic Groups of Pediatric Heart Transplant Patients. Transplantation, 2006, 82, 1774-1780.	0.5	67
104	Differential cardioprotective/cardiotoxic effects mediated by \hat{l}^2 -adrenergic receptor subtypes. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2441-H2449.	1.5	82
105	The role of βâ€Adrenergic Receptor Signaling in Cardioprotection. FASEB Journal, 2005, 19, 983-985.	0.2	68
106	Linearity versus Cross-Talk: Biological Models and the Role of the Society for Pediatric Research in the 21st Century. Pediatric Research, 2004, 56, 177-183.	1.1	0
107	Atrial tachyarrhythmias and permanent pacing after pediatric heart transplantation. Journal of Heart and Lung Transplantation, 2003, 22, 1126-1133.	0.3	31
108	Exercise assessment of transgenic models of human cardiovascular disease. Physiological Genomics, 2003, 13, 217-226.	1.0	61

#	Article	IF	CITATIONS
109	Cardiovascular and Metabolic Alterations in Mice Lacking \hat{l}^21 - and \hat{l}^22 -Adrenergic Receptors. Trends in Cardiovascular Medicine, 2002, 12, 287-294.	2.3	22
110	<scp>l</scp> -Arginine enhances aerobic exercise capacity in association with augmented nitric oxide production. Journal of Applied Physiology, 2001, 90, 933-938.	1.2	59
111	Lipoprotein abnormalities are highly prevalent in pediatric heart transplant recipients. Pediatric Transplantation, 2000, 4, 193-199.	0.5	36
112	Phospholamban deficiency does not compromise exercise capacity. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1172-H1177.	1.5	24
113	The use of advanced-age donor hearts adversely affects survival in pediatric heart transplantation. Pediatric Transplantation, 1999, 3, 309-314.	0.5	28
114	American Pediatric Society/Society for Pediatric Research Code of Responsible Conduct of Research. Pediatric Research, 1999, 45, 613-614.	1.1	3
115	Developmental and Afterload Stress Regulation of Heat Shock Proteins in the Ovine Myocardium1. Pediatric Research, 1997, 41, 51-56.	1.1	4
116	Cardiac transplantation for hypertrophic cardiomyopathy associated with sengers' syndrome. Annals of Thoracic Surgery, 1995, 60, 1425-1427.	0.7	12
117	Comparative Circulatory Effects of Isoproterenol and Dopamine in Lambs with Experimental Cyanotic Heart Disease. Pediatric Research, 1991, 29, 323-333.	1.1	10
118	Pediatric Heart Transplantation at Stanford: Results of a 15-Year Experience. Pediatrics, 1991, 88, 203-214.	1.0	121
119	Chronic Anemia in the Newborn Lamb: Cardiovascular Adaptations and Comparison to Chronic Hypoxemia. Pediatric Research, 1988, 23, 621-627.	1.1	6
120	Redistribution of Regional Blood Flow and Oxygen Delivery in Experimental Cyanotic Heart Disease in Newborn Lambs. Pediatric Research, 1987, 22, 389-393.	1.1	17
121	Chronic Hypoxemia in the Newborn Lamb: Cardiovascular, Hematopoietic, and Growth Adaptations. Pediatric Research, 1985, 19, 1004-1010.	1.1	20
122	Fatal nocardiosis infection in a pediatric patient with an immunodeficiency after heart <scp>reâ€transplantation</scp> . Pediatric Transplantation, 0, , .	0.5	1