
Aleksey V Matveyenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting senescent cells alleviates obesityâ€induced metabolic dysfunction. Aging Cell, 2019, 18, e12950.	3.0	395
2	Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Human Molecular Genetics, 2009, 18, 2388-2399.	1.4	237
3	Beneficial Endocrine but Adverse Exocrine Effects of Sitagliptin in the Human Islet Amyloid Polypeptide Transgenic Rat Model of Type 2 Diabetes. Diabetes, 2009, 58, 1604-1615.	0.3	222
4	Chronic GLP-1 Receptor Activation by Exendin-4 Induces Expansion of Pancreatic Duct Glands in Rats and Accelerates Formation of Dysplastic Lesions and Chronic Pancreatitis in the KrasG12D Mouse Model. Diabetes, 2012, 61, 1250-1262.	0.3	201
5	Disruption of Circadian Rhythms Accelerates Development of Diabetes through Pancreatic Beta-Cell Loss and Dysfunction. Journal of Biological Rhythms, 2011, 26, 423-433.	1.4	197
6	Activation of Vascular Bone Morphogenetic Protein Signaling in Diabetes Mellitus. Circulation Research, 2011, 108, 446-457.	2.0	150
7	Pulsatile Portal Vein Insulin Delivery Enhances Hepatic Insulin Action and Signaling. Diabetes, 2012, 61, 2269-2279.	0.3	142
8	Â-Cell Deficit Due to Increased Apoptosis in the Human Islet Amyloid Polypeptide Transgenic (HIP) Rat Recapitulates the Metabolic Defects Present in Type 2 Diabetes. Diabetes, 2006, 55, 2106-2114.	0.3	134
9	DNA methylation directs functional maturation of pancreatic Î ² cells. Journal of Clinical Investigation, 2015, 125, 2851-2860.	3.9	134
10	Reciprocal Regulation of Hepatic and Adipose Lipogenesis by Liver X Receptors in Obesity and Insulin Resistance. Cell Metabolism, 2013, 18, 106-117.	7.2	124
11	Islet Amyloid Polypeptide (IAPP) Transgenic Rodents as Models for Type 2 Diabetes. ILAR Journal, 2006, 47, 225-233.	1.8	121
12	Consequences of Exposure to Light at Night on the Pancreatic Islet Circadian Clock and Function in Rats. Diabetes, 2013, 62, 3469-3478.	0.3	119
13	Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nature Communications, 2020, 11, 87.	5.8	118
14	β-Cell Dysfunctional ERAD/Ubiquitin/Proteasome System in Type 2 Diabetes Mediated by Islet Amyloid Polypeptide–Induced UCH-L1 Deficiency. Diabetes, 2011, 60, 227-238.	0.3	103
15	β-Cell Failure in Type 2 Diabetes: A Case of Asking Too Much of Too Few?. Diabetes, 2013, 62, 327-335.	0.3	103
16	Diabetes Mellitus Is Associated With an Exocrine Pancreatopathy. Pancreas, 2016, 45, 1104-1110.	0.5	97
17	Circadian Etiology of Type 2 Diabetes Mellitus. Physiology, 2018, 33, 138-150.	1.6	86
18	Successful Versus Failed Adaptation to High-Fat Diet–Induced Insulin Resistance. Diabetes, 2009, 58, 906-916.	0.3	84

ALEKSEY V MATVEYENKO

#	Article	IF	CITATIONS
19	Phases of Metabolic and Soft Tissue Changes in Months Preceding a Diagnosis of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2019, 156, 1742-1752.	0.6	82
20	mTORC1-to-AMPK switching underlies β cell metabolic plasticity during maturation and diabetes. Journal of Clinical Investigation, 2019, 129, 4124-4137.	3.9	80
21	Glucose metabolism during rotational shift-work in healthcare workers. Diabetologia, 2017, 60, 1483-1490.	2.9	76
22	Mechanisms of Impaired Fasting Glucose and Glucose Intolerance Induced by a Â50% Pancreatectomy. Diabetes, 2006, 55, 2347-2356.	0.3	71
23	Activation of Melatonin Signaling Promotes β-Cell Survival and Function. Molecular Endocrinology, 2015, 29, 682-692.	3.7	62
24	Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight, 2020, 5,	2.3	60
25	Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice. Diabetologia, 2016, 59, 734-743.	2.9	59
26	A method for the generation of human stem cell-derived alpha cells. Nature Communications, 2020, 11, 2241.	5.8	54
27	Adaptations in pulsatile insulin secretion, hepatic insulin clearance, and β-cell mass to age-related insulin resistance in rats. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E832-E841.	1.8	48
28	Activation of Hindbrain Neurons Is Mediated by Portal-Mesenteric Vein Glucosensors During Slow-Onset Hypoglycemia. Diabetes, 2014, 63, 2866-2875.	0.3	47
29	Circadian Disruption and Diet-Induced Obesity Synergize to Promote Development of β-Cell Failure and Diabetes in Male Rats. Endocrinology, 2015, 156, 4426-4436.	1.4	47
30	Differential Effects of Prenatal and Postnatal Nutritional Environment on \hat{I}^2 -Cell Mass Development and Turnover in Male and Female Rats. Endocrinology, 2010, 151, 5647-5656.	1.4	44
31	Specialized Mechanosensory Epithelial Cells in Mouse Gut Intrinsic Tactile Sensitivity. Gastroenterology, 2022, 162, 535-547.e13.	0.6	44
32	Measurement of pulsatile insulin secretion in the rat: direct sampling from the hepatic portal vein. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E569-E574.	1.8	38
33	Administration of Melatonin and Metformin Prevents Deleterious Effects of Circadian Disruption and Obesity in Male Rats. Endocrinology, 2016, 157, 4720-4731.	1.4	38
34	High fat diet consumption results in mitochondrial dysfunction, oxidative stress, and oligodendrocyte loss in the central nervous system. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165630.	1.8	34
35	Induction of Core Circadian Clock Transcription Factor Bmal1 Enhances β-Cell Function and Protects Against Obesity-Induced Glucose Intolerance. Diabetes, 2021, 70, 143-154.	0.3	32
36	Does Disruption of Circadian Rhythms Contribute to Beta-Cell Failure in Type 2 Diabetes?. Current Diabetes Reports, 2014, 14, 474.	1.7	31

Aleksey V Matveyenko

#	Article	IF	CITATIONS
37	Circadian variation of the pancreatic islet transcriptome. Physiological Genomics, 2016, 48, 677-687.	1.0	28
38	Metabolic Sensors Mediate Hypoglycemic Detection at the Portal Vein. Diabetes, 2006, 55, 1276-1282.	0.3	27
39	Recovery of high-quality RNA from laser capture microdissected human and rodent pancreas. Journal of Histotechnology, 2016, 39, 59-65.	0.2	26
40	Pro-inflammatory β cell small extracellular vesicles induce β cell failure through activation of the CXCL10/CXCR3 axis in diabetes. Cell Reports, 2021, 36, 109613.	2.9	25
41	Inhibition of TBK1/IKKε Promotes Regeneration of Pancreatic β-cells. Scientific Reports, 2018, 8, 15587.	1.6	24
42	Postnatal Ontogenesis of the Islet Circadian Clock Plays a Contributory Role in β-Cell Maturation Process. Diabetes, 2018, 67, 911-922.	0.3	22
43	Time-restricted feeding prevents deleterious metabolic effects of circadian disruption through epigenetic control of Î ² cell function. Science Advances, 2021, 7, eabg6856.	4.7	21
44	A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. Science Advances, 2022, 8, eabj9949.	4.7	20
45	Impaired β-cell glucokinase as an underlying mechanism in diet-induced diabetes. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	19
46	Live-cell imaging of glucose-induced metabolic coupling of β and αÂcell metabolism in health and typeÂ2 diabetes. Communications Biology, 2021, 4, 594.	2.0	19
47	Proinflammatory Cytokine Interleukin 1β Disrupts β-cell Circadian Clock Function and Regulation of Insulin Secretion. Endocrinology, 2021, 162, .	1.4	18
48	Proteasomal degradation of the histone acetyl transferase p300 contributes to beta-cell injury in a diabetes environment. Cell Death and Disease, 2018, 9, 600.	2.7	16
49	A Western diet impairs CNS energy homeostasis and recovery after spinal cord injury: Link to astrocyte metabolism. Neurobiology of Disease, 2020, 141, 104934.	2.1	15
50	Sex Differences in Hepatic Gluconeogenic Capacity After Chronic Alcohol Consumption. Clinical Medicine and Research, 2007, 5, 193-202.	0.4	14
51	Diabetes-associated genetic variation in TCF7L2 alters pulsatile insulin secretion in humans. JCI Insight, 2020, 5, .	2.3	14
52	Dietary carbohydrates modulate metabolic and β-cell adaptation to high-fat diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E856-E865.	1.8	14
53	Lateâ€life timeâ€restricted feeding and exercise differentially alter healthspan in obesity. Aging Cell, 2019, 18, e12966.	3.0	13
54	Type 1 equilibrative nucleoside transporter (ENT1) regulates sexâ€specific ethanol drinking during diring discuption of circadian rhythms. Addiction Biology, 2020, 25, e12801.	1.4	13

ALEKSEY V MATVEYENKO

#	Article	IF	CITATIONS
55	Timing Is Everything: Implications for Metabolic Consequences of Sleep Restriction. Diabetes, 2014, 63, 1826-1828.	0.3	11
56	Measurement of Pulsatile Insulin Secretion: Rationale and Methodology. Metabolites, 2021, 11, 409.	1.3	11
57	Electrogenic sodium bicarbonate cotransporter NBCe1 regulates pancreatic β cell function in type 2 diabetes. Journal of Clinical Investigation, 2021, 131, .	3.9	11
58	It's about time: clocks in the developing lung. Journal of Clinical Investigation, 2020, 130, 39-50.	3.9	10
59	Alcohol-induced suppression of gluconeogenesis is greater in ethanol fed female rat hepatocytes than males. Alcohol, 2007, 41, 67-75.	0.8	9
60	Regenerative Medicine in Diabetes. Mayo Clinic Proceedings, 2015, 90, 546-554.	1.4	9
61	Pancreatic ductal adenocarcinoma is associated with a unique endocrinopathy distinct from type 2 diabetes mellitus. Pancreatology, 2020, 20, 929-935.	0.5	7
62	It's What and When You Eat: An Overview of Transcriptional and Epigenetic Responses to Dietary Perturbations in Pancreatic Islets. Frontiers in Endocrinology, 2022, 13, 842603.	1.5	6
63	Consideration for Circadian Physiology in Rodent Research. Physiology, 2018, 33, 250-251.	1.6	5
64	Assessment of pulsatile insulin secretion derived from peripheral plasma C-peptide concentrations by nonparametric stochastic deconvolution. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E687-E694.	1.8	5
65	Insulin Pulse Characteristics and Insulin Action in Non-diabetic Humans. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1702-1709.	1.8	5
66	Opposing Effects of Chronic Alcohol Consumption on Hepatic Gluconeogenesis for Female Versus Male Rats. Alcoholism: Clinical and Experimental Research, 2005, 29, 1899-1905.	1.4	4
67	Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E213-E221.	1.8	4
68	Targeted Derivation of Organotypic Glucose- and GLP-1-Responsive Î ² Cells Prior to Transplantation into Diabetic Recipients. Stem Cell Reports, 2019, 13, 307-321.	2.3	3
69	TBK1 regulates regeneration of pancreatic Î ² -cells. Scientific Reports, 2020, 10, 19374.	1.6	3
70	Cellular clocks in hyperoxia effects on [Ca2+]i regulation in developing human airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L451-L466.	1.3	3
71	The nuclear receptor REV-ERBα is implicated in the alteration of β-cell autophagy and survival under diabetogenic conditions. Cell Death and Disease, 2022, 13, 353.	2.7	3
72	Walking a fine line between Î ² -cell secretion and proliferation. Journal of Biological Chemistry, 2018, 293, 14190-14191.	1.6	2

#	Article	IF	CITATIONS
73	Physiological Glucocorticoid Replacement in Adrenal Insufficiency: Does It Fix the Broken Clock?. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3511-3513.	1.8	2
74	The relationship between insulin and glucagon concentrations in <scp>nonâ€diabetic</scp> humans. Physiological Reports, 2022, 10, .	0.7	1
75	\hat{I}^2 cell self-renewal: Cyclin D2 to the rescue. Cell Cycle, 2017, 16, 1326-1327.	1.3	Ο
76	A Century of Insulin: Outstanding Physiological Breakthroughs. Physiology, 2021, 36, 197-200.	1.6	0
77	Association between high fat consumption, myelin loss, and mitochondrial dynamics. FASEB Journal, 2018, 32, 543.15.	0.2	Ο
78	NBCe1 is a novel regulator of pancreatic β ell function in diabetes. FASEB Journal, 2019, 33, 544.4.	0.2	0