
Kislon VoÃ⁻tchovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1321933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a setup to characterize capillary liquid bridges between liquid infused surfaces. AIP Advances, 2022, 12, .	1.3	1
2	Gold surface cleaning by etching polishing: Optimization of polycrystalline film topography and surface functionality for biosensing. Surfaces and Interfaces, 2021, 22, 100818.	3.0	5
3	Development of a flexure-based nano-actuator for high-frequency high-resolution directional sensing with atomic force microscopy. Review of Scientific Instruments, 2021, 92, 093703.	1.3	1
4	Real-time tracking of ionic nano-domains under shear flow. Scientific Reports, 2021, 11, 19540.	3.3	6
5	Lubricated friction around nanodefects. Science Advances, 2020, 6, eaaz3673.	10.3	20
6	Cotranscriptional Folding of a Bio-orthogonal Fluorescent Scaffolded RNA Origami. ACS Synthetic Biology, 2020, 9, 1682-1692.	3.8	13
7	Nanoscale Mapping of the Directional Flow Patterns at Liquid-Solid Interfaces. Physical Review Applied, 2020, 13, .	3.8	10
8	Effect of Ageing on the Structure and Properties of Model Liquid-Infused Surfaces. Langmuir, 2020, 36, 3461-3470.	3.5	20
9	Self-assembly of small molecules at hydrophobic interfaces using group effect. Nanoscale, 2020, 12, 5452-5463.	5.6	27
10	Impact of water on the lubricating properties of hexadecane at the nanoscale. Nanoscale, 2020, 12, 14504-14513.	5.6	12
11	Coating and Stabilization of Liposomes by Clathrin-Inspired DNA Self-Assembly. ACS Nano, 2020, 14, 2316-2323.	14.6	38
12	Long-lived ionic nano-domains can modulate the stiffness of soft interfaces. Nanoscale, 2019, 11, 4376-4384.	5.6	21
13	Determining the spring constant of arbitrarily shaped cantilevers in viscous environments. Applied Physics Letters, 2018, 112, .	3.3	10
14	A non-destructive method to calibrate the torsional spring constant of atomic force microscope cantilevers in viscous environments. Journal of Applied Physics, 2018, 124, .	2.5	7
15	In Situ Molecular-Level Observation of Methanol Catalysis at the Water–Graphite Interface. ACS Applied Materials & Interfaces, 2018, 10, 34265-34271.	8.0	11
16	Impact of Electric Fields on the Nanoscale Behavior of Lipid Monolayers at the Surface of Graphite in Solution. Langmuir, 2018, 34, 9561-9571.	3.5	7
17	Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon. Scientific Reports, 2018, 8, 6989.	3.3	22
18	Substrate-led cholesterol extraction from supported lipid membranes. Nanoscale, 2018, 10, 16332-16342.	5.6	13

KISLON VOÃ-TCHOVSKY

#	Article	IF	CITATIONS
19	Lubricating properties of single metal ions at interfaces. Nanoscale, 2018, 10, 11831-11840.	5.6	21
20	Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions. Scientific Reports, 2017, 7, 43234.	3.3	44
21	Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever. Analyst, The, 2017, 142, 1492-1498.	3.5	24
22	Ions Modulate Stress-Induced Nanotexture in Supported Fluid Lipid Bilayers. Biophysical Journal, 2017, 113, 426-439.	0.5	13
23	Sub-nanometre mapping of the aquaporin–water interface using multifrequency atomic force microscopy. Soft Matter, 2017, 13, 187-195.	2.7	18
24	Effect of temperature on the viscoelastic properties of nano-confined liquid mixtures. Nanoscale, 2016, 8, 17472-17482.	5.6	8
25	Molecular Resolution in situ Imaging of Spontaneous Graphene Exfoliation. Journal of Physical Chemistry Letters, 2016, 7, 3118-3122.	4.6	34
26	Visualising the molecular alteration of the calcite (104) – water interface by sodium nitrate. Scientific Reports, 2016, 6, 21576.	3.3	37
27	Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces. Nature Communications, 2016, 7, 13064.	12.8	33
28	Sub-nanometer Resolution Imaging with Amplitude-modulation Atomic Force Microscopy in Liquid. Journal of Visualized Experiments, 2016, , .	0.3	21
29	Swelling Behavior and Nanomechanical Properties of (Peptide-Modified) Poly(2-hydroxyethyl) Tj ETQq1 1 0.78431 4609-4618.	4 rgBT /O 4.8	verlock 10 T 19
30	Buffering agents modify the hydration landscape at charged interfaces. Soft Matter, 2016, 12, 2642-2651.	2.7	26
31	Ion structure controls ionic liquid near-surface and interfacial nanostructure. Chemical Science, 2015, 6, 527-536.	7.4	93
32	High-resolution AFM in liquid: what about the tip?. Nanotechnology, 2015, 26, 100501.	2.6	9
33	Growth and Dissolution of Calcite in the Presence of Adsorbed Stearic Acid. Langmuir, 2015, 31, 7563-7571.	3.5	34
34	In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO ₂ Surface of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 10834-10842.	8.0	30
35	Near surface properties of mixtures of propylammonium nitrate with n-alkanols 1. Nanostructure. Physical Chemistry Chemical Physics, 2015, 17, 26621-26628.	2.8	14
36	Water-induced correlation between single ions imaged at the solid–liquid interface. Nature Communications, 2014, 5, 4400.	12.8	150

KISLON VOÃ-TCHOVSKY

#	Article	IF	CITATIONS
37	Trace concentration – Huge impact: Nitrate in the calcite/Eu(III) system. Geochimica Et Cosmochimica Acta, 2014, 125, 528-538.	3.9	10
38	An aqueous red emitting fluorescent fluoride sensing probe exhibiting a large Stokes shift and its application in cell imaging. Chemical Communications, 2014, 50, 320-322.	4.1	119
39	3-Dimensional atomic scale structure of the ionic liquid–graphite interface elucidated by AM-AFM and quantum chemical simulations. Nanoscale, 2014, 6, 8100-8106.	5.6	78
40	Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nature Communications, 2014, 5, 4482.	12.8	183
41	A colorimetric and ratiometric fluorescent probe for sulfite based on an intramolecular cleavage mechanism. Luminescence, 2014, 29, 749-753.	2.9	29
42	In-situ investigation of adsorption of dye and coadsorbates on TiO ₂ films using QCM-D, fluorescence and AFM techniques. Proceedings of SPIE, 2013, , .	0.8	0
43	The interplay between apparent viscosity and wettability in nanoconfined water. Nature Communications, 2013, 4, 2482.	12.8	227
44	Direct Visualization of Single lons in the Stern Layer of Calcite. Langmuir, 2013, 29, 2207-2216.	3.5	150
45	Adsorbed and near surface structure of ionic liquids at a solid interface. Physical Chemistry Chemical Physics, 2013, 15, 3320.	2.8	114
46	Electrical Method to Quantify Nanoparticle Interaction with Lipid Bilayers. ACS Nano, 2013, 7, 932-942.	14.6	89
47	Lowâ€Voltage Selfâ€Assembled Monolayer Fieldâ€Effect Transistors on Flexible Substrates. Advanced Materials, 2013, 25, 4511-4514.	21.0	78
48	Identifying champion nanostructures for solar water-splitting. Nature Materials, 2013, 12, 842-849.	27.5	527
49	Anharmonicity, solvation forces, and resolution in atomic force microscopy at the solid-liquid interface. Physical Review E, 2013, 88, 022407.	2.1	41
50	High-resolution imaging of solvation structures with amplitude-modulation atomic force microscopy. Proceedings of SPIE, 2012, , .	0.8	11
51	Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane. Nanotechnology, 2011, 22, 055709.	2.6	13
52	Low-Voltage p- and n-Type Organic Self-Assembled Monolayer Field Effect Transistors. Nano Letters, 2011, 11, 156-159.	9.1	108
53	Concept of a Molecular Charge Storage Dielectric Layer for Organic Thinâ€Film Memory Transistors. Advanced Materials, 2010, 22, 2525-2528.	21.0	113
54	Direct mapping of the solid–liquid adhesion energy with subnanometre resolution. Nature Nanotechnology, 2010, 5, 401-405.	31.5	163

KISLON VOÃ-TCHOVSKY

#	Article	IF	CITATIONS
55	Controlled ionic condensation at the surface of a native extremophilemembrane. Nanoscale, 2010, 2, 222-229.	5.6	18
56	The effect of nanometre-scale structure on interfacial energy. Nature Materials, 2009, 8, 837-842.	27.5	215
57	Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. Journal of Structural Biology, 2009, 167, 153-158.	2.8	93
58	Lateral coupling and cooperative dynamics in the function of the native membrane protein bacteriorhodopsin. Soft Matter, 2009, 5, 4899.	2.7	8
59	Inter-Oligomer Interactions of the Human Prion Protein Are Modulated by the Polymorphism at Codon 129. Journal of Molecular Biology, 2008, 381, 212-220.	4.2	18
60	Electrostatic and Steric Interactions Determine Bacteriorhodopsin Single-Molecule Biomechanics. Biophysical Journal, 2007, 93, 2024-2037.	0.5	8
61	Differential Stiffness and Lipid Mobility in the Leaflets of Purple Membranes. Biophysical Journal, 2006, 90, 2075-2085.	0.5	56

 62 2P532 High-resolution dynamic imaging of membrane proteins by high-speed AFM(52. Bio-imaging, Poster) Tj ETQq $^{0.0}_{0.1}$ 0 rgBT/Overlock

63	Ultrafast Excited State Dynamics of the Protonated Schiff Base of All-trans Retinal in Solvents. Biophysical Journal, 2005, 88, 2779-2788.	0.5	84
64	Ultrafast photophysics of the protonated Schiff base of retinal in alcohols studied by femtosecond fluorescence up-conversion. , 2004, , 457-460.		2