List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1321645/publications.pdf Version: 2024-02-01



KUSUM K KHADBANDA

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A review of alcohol–pathogen interactions: New insights into combined disease pathomechanisms.<br>Alcoholism: Clinical and Experimental Research, 2022, 46, 359-370.                                           | 1.4 | 9         |
| 2  | Cell-to-Cell Communications in Alcohol-Associated Liver Disease. Frontiers in Physiology, 2022, 13, 831004.                                                                                                    | 1.3 | 9         |
| 3  | Alcohol basic and translational research 15th Charles Lieber - 1st Samuel French satellite symposium.<br>Experimental and Molecular Pathology, 2022, , 104750.                                                 | 0.9 | 4         |
| 4  | Malondialdehyde Acetaldehyde-Adduction Changes Surfactant Protein D Structure and Function.<br>Frontiers in Immunology, 2022, 13, .                                                                            | 2.2 | 3         |
| 5  | Pathogenesis of Alcohol-Associated Liver Disease. Journal of Clinical and Experimental Hepatology, 2022, 12, 1492-1513.                                                                                        | 0.4 | 17        |
| 6  | Alcohol and HIV-Derived Hepatocyte Apoptotic Bodies Induce Hepatic Stellate Cell Activation. Biology, 2022, 11, 1059.                                                                                          | 1.3 | 4         |
| 7  | Second hits exacerbate alcohol-related organ damage: an update. Alcohol and Alcoholism, 2021, 56,<br>8-16.                                                                                                     | 0.9 | 8         |
| 8  | Natural Recovery by the Liver and Other Organs After Chronic Alcohol Use. Alcohol Research:<br>Current Reviews, 2021, 41, 05.                                                                                  | 1.9 | 19        |
| 9  | Alcohol-and-HIV-Induced Lysosomal Dysfunction Regulates Extracellular Vesicles Secretion in Vitro and in Liver-Humanized Mice. Biology, 2021, 10, 29.                                                          | 1.3 | 13        |
| 10 | Pancreatogenic Diabetes: Triggering Effects of Alcohol and HIV. Biology, 2021, 10, 108.                                                                                                                        | 1.3 | 8         |
| 11 | Contrasting Effects of Fasting on Liver-Adipose Axis in Alcohol-Associated and Non-alcoholic Fatty<br>Liver. Frontiers in Physiology, 2021, 12, 625352.                                                        | 1.3 | 7         |
| 12 | Beneficial Effects of Betaine: A Comprehensive Review. Biology, 2021, 10, 456.                                                                                                                                 | 1.3 | 75        |
| 13 | Elevated S-adenosylhomocysteine induces adipocyte dysfunction to promote alcohol-associated liver steatosis. Scientific Reports, 2021, 11, 14693.                                                              | 1.6 | 9         |
| 14 | Malondialdehyde-Acetaldehyde Adduct Formation Decreases Immunoglobulin A Transport across<br>Airway Epithelium in Smokers Who Abuse Alcohol. American Journal of Pathology, 2021, 191, 1732-1742.              | 1.9 | 4         |
| 15 | Susceptibility of Asialoglycoprotein Receptor-Deficient Mice to LPS/Galactosamine Liver Injury and Protection by Betaine Administration. Biology, 2021, 10, 19.                                                | 1.3 | 8         |
| 16 | Alcohol-Induced Lysosomal Damage and Suppression of Lysosome Biogenesis Contribute to Hepatotoxicity in HIV-Exposed Liver Cells. Biomolecules, 2021, 11, 1497.                                                 | 1.8 | 10        |
| 17 | Mechanisms, biomarkers and targets for therapy in alcohol-associated liver injury: From Genetics to nutrition: Summary of the ISBRA 2018 symposium. Alcohol, 2020, 83, 105-114.                                | 0.8 | 17        |
| 18 | Acetaldehyde suppresses HBV-MHC class I complex presentation on hepatocytes via induction of ER<br>stress and Golgi fragmentation. American Journal of Physiology - Renal Physiology, 2020, 319,<br>G432-G442. | 1.6 | 9         |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Recent Advances in Understanding the Complexity of Alcohol-Induced Pancreatic Dysfunction and<br>Pancreatitis Development. Biomolecules, 2020, 10, 669.                                                                                       | 1.8 | 13        |
| 20 | Role of non-Genetic Risk Factors in Exacerbating Alcohol-related organ damage. Alcohol, 2020, 87, 63-72.                                                                                                                                      | 0.8 | 1         |
| 21 | Ghrelin regulates adipose tissue metabolism: Role in hepatic steatosis. Chemico-Biological<br>Interactions, 2020, 322, 109059.                                                                                                                | 1.7 | 9         |
| 22 | Role of Elevated Intracellular S-Adenosylhomocysteine in the Pathogenesis of Alcohol-Related Liver<br>Disease. Cells, 2020, 9, 1526.                                                                                                          | 1.8 | 6         |
| 23 | Role of alcohol in pathogenesis of hepatitis B virus infection. World Journal of Gastroenterology, 2020, 26, 883-903.                                                                                                                         | 1.4 | 24        |
| 24 | Obeticholic acid attenuates human immunodeficiency virus/alcohol metabolism-induced pro-fibrotic activation in liver cells. World Journal of Hepatology, 2020, 12, 965-975.                                                                   | 0.8 | 4         |
| 25 | Reply to "Letter to Editor: Chronic alcohol exposure alters circulating insulin and ghrelin levels in<br>hepatic steatosis: a translational research perspective― American Journal of Physiology - Renal<br>Physiology, 2019, 317, G361-G362. | 1.6 | 2         |
| 26 | Inhibition of Ghrelin Activity by Receptor Antagonist [d-Lys-3] GHRP-6 Attenuates Alcohol-Induced<br>Hepatic Steatosis by Regulating Hepatic Lipid Metabolism. Biomolecules, 2019, 9, 517.                                                    | 1.8 | 11        |
| 27 | Acetaldehyde suppresses the display of HBV-MHC class I complexes on HBV-expressing hepatocytes.<br>American Journal of Physiology - Renal Physiology, 2019, 317, G127-G140.                                                                   | 1.6 | 21        |
| 28 | Lipophagy and Alcohol-Induced Fatty Liver. Frontiers in Pharmacology, 2019, 10, 495.                                                                                                                                                          | 1.6 | 36        |
| 29 | Human immunodeficiency virus and hepatotropic viruses co-morbidities as the inducers of liver injury progression. World Journal of Gastroenterology, 2019, 25, 398-410.                                                                       | 1.4 | 42        |
| 30 | Chronic alcohol exposure alters circulating insulin and ghrelin levels: role of ghrelin in hepatic steatosis. American Journal of Physiology - Renal Physiology, 2019, 316, G453-G461.                                                        | 1.6 | 21        |
| 31 | Lysosome and proteasome dysfunction in alcohol-induced liver injury. Liver Research, 2019, 3, 191-205.                                                                                                                                        | 0.5 | 15        |
| 32 | Alcohol Metabolism Potentiates HIV-Induced Hepatotoxicity: Contribution to End-Stage Liver Disease.<br>Biomolecules, 2019, 9, 851.                                                                                                            | 1.8 | 25        |
| 33 | Demethylase JMJD6 as a New Regulator of Interferon Signaling: Effects of HCV and Ethanol<br>Metabolism. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 101-112.                                                             | 2.3 | 20        |
| 34 | Liver as a target of human immunodeficiency virus infection. World Journal of Gastroenterology, 2018, 24, 4728-4737.                                                                                                                          | 1.4 | 45        |
| 35 | Decreasing Phosphatidylcholine on the Surface of the Lipid Droplet Correlates with Altered Protein Binding and Steatosis. Cells, 2018, 7, 230.                                                                                                | 1.8 | 28        |
| 36 | Hepatitis C Virus-Infected Apoptotic Hepatocytes Program Macrophages and Hepatic Stellate Cells for<br>Liver Inflammation and Fibrosis Development: Role of Ethanol as a Second Hit. Biomolecules, 2018, 8,<br>113.                           | 1.8 | 14        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Loss of α- and β-Tubulin Proteins Are a Pathological Hallmark of Chronic Alcohol Consumption and<br>Natural Brain Ageing. Brain Sciences, 2018, 8, 175.                                                                                                   | 1.1 | 15        |
| 38 | Oxidative stress associated with aging activates protein kinase CÎμ, leading to cilia slowing. American<br>Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L882-L890.                                                              | 1.3 | 18        |
| 39 | Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Experimental and<br>Molecular Pathology, 2017, 102, 162-180.                                                                                                                | 0.9 | 40        |
| 40 | Malondialdehyde–Acetaldehyde (MAA) Protein Adducts Are Found Exclusively in the Lungs of Smokers<br>with Alcohol Use Disorders and Are Associated with Systemic Antiâ€MAA Antibodies. Alcoholism:<br>Clinical and Experimental Research, 2017, 41, 2093-2099. | 1.4 | 22        |
| 41 | Malondialdehyde-acetaldehyde (MAA) adducted surfactant protein induced lung inflammation is mediated through scavenger receptor a (SR-A1). Respiratory Research, 2017, 18, 36.                                                                                | 1.4 | 16        |
| 42 | Bifunctional Enzyme JMJD6 Contributes to Multiple Disease Pathogenesis: New Twist on the Old Story.<br>Biomolecules, 2017, 7, 41.                                                                                                                             | 1.8 | 27        |
| 43 | Treatment options for alcoholic and non-alcoholic fatty liver disease: A review. World Journal of<br>Gastroenterology, 2017, 23, 6549-6570.                                                                                                                   | 1.4 | 179       |
| 44 | Structure, Function and Metabolism of Hepatic and Adipose Tissue Lipid Droplets: Implications in Alcoholic Liver Disease. Current Molecular Pharmacology, 2017, 10, 237-248.                                                                                  | 0.7 | 19        |
| 45 | Alcoholic Liver Disease: Pathogenesis and Current Management. Alcohol Research: Current Reviews, 2017, 38, 147-161.                                                                                                                                           | 1.9 | 176       |
| 46 | Multi-Organ Alcohol-Related Damage: Mechanisms and Treatment. Biomolecules, 2016, 6, 20.                                                                                                                                                                      | 1.8 | 24        |
| 47 | Ceramide Induces Human Hepcidin Gene Transcription through JAK/STAT3 Pathway. PLoS ONE, 2016, 11, e0147474.                                                                                                                                                   | 1.1 | 16        |
| 48 | Effects of Nonpurified and Choline Supplemented or Nonsupplemented Purified Diets on Hepatic<br>Steatosis and Methionine Metabolism in C3H Mice. Metabolic Syndrome and Related Disorders, 2016, 14,<br>202-209.                                              | 0.5 | 5         |
| 49 | Malondialdehyde–Acetaldehydeâ€Adducted Surfactant Protein Alters Macrophage Functions Through<br>Scavenger Receptor A. Alcoholism: Clinical and Experimental Research, 2016, 40, 2563-2572.                                                                   | 1.4 | 15        |
| 50 | Creatine Supplementation Does Not Prevent the Development of Alcoholic Steatosis. Alcoholism:<br>Clinical and Experimental Research, 2016, 40, 2312-2319.                                                                                                     | 1.4 | 10        |
| 51 | Acetaldehyde Disrupts Interferon Alpha Signaling in Hepatitis C Virusâ€Infected Liver Cells by<br>Upâ€Regulating <scp>USP</scp> 18. Alcoholism: Clinical and Experimental Research, 2016, 40, 2329-2338.                                                      | 1.4 | 38        |
| 52 | Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde. American Journal of<br>Physiology - Renal Physiology, 2016, 310, G930-G940.                                                                                                   | 1.6 | 28        |
| 53 | Alcoholic vs non-alcoholic fatty liver in rats: distinct differences in endocytosis and vesicle trafficking despite similar pathology. BMC Gastroenterology, 2016, 16, 27.                                                                                    | 0.8 | 19        |
| 54 | Transcriptomic and metabolic analyses reveal salvage pathways in creatine-deficient AGATâ^'/â^' mice.<br>Amino Acids, 2016, 48, 2025-2039.                                                                                                                    | 1.2 | 12        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aberrant post-translational protein modifications in the pathogenesis of alcohol-induced liver injury. World Journal of Gastroenterology, 2016, 22, 6192.                                                                                                               | 1.4 | 22        |
| 56 | Prolonged feeding with guanidinoacetate, a methyl group consumer, exacerbates ethanol-induced<br>liver injury. World Journal of Gastroenterology, 2016, 22, 8497.                                                                                                       | 1.4 | 8         |
| 57 | Lack of hepcidin expression attenuates steatosis and causes fibrosis in the liver. World Journal of Hepatology, 2016, 8, 211.                                                                                                                                           | 0.8 | 15        |
| 58 | FAT10 suppression stabilizes oxidized proteins in liver cells: Effects of HCV and ethanol. Experimental and Molecular Pathology, 2015, 99, 506-516.                                                                                                                     | 0.9 | 13        |
| 59 | In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury,<br>Altered Metabolic and Epigenetic Responses. Biomolecules, 2015, 5, 3280-3294.                                                                                        | 1.8 | 18        |
| 60 | Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?. Biomolecules, 2015, 5, 76-94.                                                                                                                                                                               | 1.8 | 24        |
| 61 | Isoaspartate, carbamoyl phosphate synthase-1, and carbonic anhydrase-III as biomarkers of liver injury.<br>Biochemical and Biophysical Research Communications, 2015, 458, 626-631.                                                                                     | 1.0 | 19        |
| 62 | Role of defective methylation reactions in ethanol-induced dysregulation of intestinal barrier integrity. Biochemical Pharmacology, 2015, 96, 30-38.                                                                                                                    | 2.0 | 18        |
| 63 | Acetaldehyde accelerates HCV-induced impairment of innate immunity by suppressing methylation reactions in liver cells. American Journal of Physiology - Renal Physiology, 2015, 309, G566-G577.                                                                        | 1.6 | 36        |
| 64 | Alcoholic liver disease: Clinical and translational research. Experimental and Molecular Pathology,<br>2015, 99, 596-610.                                                                                                                                               | 0.9 | 36        |
| 65 | Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease. Epigenetics, 2014, 9, 286-296.                                                                                           | 1.3 | 54        |
| 66 | Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene<br>Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease.<br>International Journal of Molecular Sciences, 2014, 15, 8004-8023. | 1.8 | 32        |
| 67 | Methylation and Gene Expression Responses to Ethanol Feeding and Betaine Supplementation in the<br>Cystathionine Beta Synthase-Deficient Mouse. Alcoholism: Clinical and Experimental Research, 2014, 38,<br>1540-1549.                                                 | 1.4 | 22        |
| 68 | Nicotinic Acid Supplementation in the Context of Alcoholic Liver Injury: Friend or Foe?. Alcoholism:<br>Clinical and Experimental Research, 2014, 38, 1829-1831.                                                                                                        | 1.4 | 1         |
| 69 | Alcohol Consumption Decreases Rat Hepatic Creatine Biosynthesis Via Altered Guanidinoacetate<br>Methyltransferase Activity. Alcoholism: Clinical and Experimental Research, 2014, 38, 641-648.                                                                          | 1.4 | 18        |
| 70 | Ethanol affects hepatitis C pathogenesis: Humanized SCID Alb-uPA mouse model. Biochemical and Biophysical Research Communications, 2014, 450, 773-776.                                                                                                                  | 1.0 | 9         |
| 71 | Alcoholic and non-alcoholic steatohepatitis. Experimental and Molecular Pathology, 2014, 97, 492-510.                                                                                                                                                                   | 0.9 | 56        |
| 72 | Epigenetic histone modifications in a clinically relevant rat model of chronic ethanol-binge-mediated liver injury. Hepatology International, 2014, 8, 421-430.                                                                                                         | 1.9 | 16        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway<br>epithelial cells. Alcohol, 2014, 48, 493-500.                                                                                         | 0.8 | 18        |
| 74 | Increased methylation demand exacerbates ethanol-induced liver injury. Experimental and Molecular<br>Pathology, 2014, 97, 49-56.                                                                                                     | 0.9 | 16        |
| 75 | Regulation of FOXO3 by phosphorylation and methylation in hepatitis C virus infection and alcohol exposure. Hepatology, 2014, 59, 58-70.                                                                                             | 3.6 | 57        |
| 76 | Changes in the pathogenesis of alcohol-induced liver disease — Preclinical studies. Experimental and Molecular Pathology, 2013, 95, 376-384.                                                                                         | 0.9 | 17        |
| 77 | Impact of Altered Methylation in Cytokine Signaling and Proteasome Function in Alcohol and<br>Viralâ€Mediated Diseases. Alcoholism: Clinical and Experimental Research, 2013, 37, 1-7.                                               | 1.4 | 14        |
| 78 | Smoke Extract Impairs Adenosine Wound Healing. Implications of Smoke-Generated Reactive Oxygen<br>Species. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 665-673.                                            | 1.4 | 23        |
| 79 | Methionine metabolic pathway in alcoholic liver injury. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 89-95.                                                                                                   | 1.3 | 46        |
| 80 | Wilson's disease: Changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology, 2013, 57, 555-565.                                                                             | 3.6 | 82        |
| 81 | Betaine Treatment Attenuates Chronic Ethanol-Induced Hepatic Steatosis and Alterations to the<br>Mitochondrial Respiratory Chain Proteome. International Journal of Hepatology, 2012, 2012, 1-10.                                    | 0.4 | 69        |
| 82 | Ethanol and Hepatitis <scp>C</scp> Virus Suppress Peptide– <scp>MHC</scp> Class <scp>I</scp><br>Presentation in Hepatocytes by Altering Proteasome Function. Alcoholism: Clinical and Experimental<br>Research, 2012, 36, 2028-2035. | 1.4 | 17        |
| 83 | Malondialdehyde–acetaldehyde-adducted protein inhalation causes lung injury. Alcohol, 2012, 46,<br>51-59.                                                                                                                            | 0.8 | 38        |
| 84 | Ethanol Lowers Glutathione in Rat Liver and Brain and Inhibits Methionine Synthase in a<br>Cobalamin-Dependent Manner. Alcoholism: Clinical and Experimental Research, 2011, 35, 277-283.                                            | 1.4 | 25        |
| 85 | Hybrid Malondialdehyde and Acetaldehyde Protein Adducts Form in the Lungs of Mice Exposed to<br>Alcohol and Cigarette Smoke. Alcoholism: Clinical and Experimental Research, 2011, 35, 1106-1113.                                    | 1.4 | 62        |
| 86 | Impaired methylation as a novel mechanism for proteasome suppression in liver cells. Biochemical and Biophysical Research Communications, 2010, 391, 1291-1296.                                                                      | 1.0 | 33        |
| 87 | Alcoholic Liver Disease and Methionine Metabolism. Seminars in Liver Disease, 2009, 29, 155-165.                                                                                                                                     | 1.8 | 102       |
| 88 | Carbon tetrachloride-induced liver damage in asialoglycoprotein receptor-deficient mice. Biochemical<br>Pharmacology, 2009, 77, 1283-1290.                                                                                           | 2.0 | 26        |
| 89 | Betaine administration corrects ethanol-induced defective VLDL secretion. Molecular and Cellular Biochemistry, 2009, 327, 75-78.                                                                                                     | 1.4 | 77        |
| 90 | Ethanol Blocks Adenosine Uptake via Inhibiting the Nucleoside Transport System in Bronchial<br>Epithelial Cells. Alcoholism: Clinical and Experimental Research, 2009, 33, 791-798.                                                  | 1.4 | 26        |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Proteomics reveal a concerted upregulation of methionine metabolic pathway enzymes, and<br>downregulation of carbonic anhydrase-III, in betaine supplemented ethanol-fed rats. Biochemical and<br>Biophysical Research Communications, 2009, 381, 523-527. | 1.0 | 42        |
| 92  | Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: summary of a symposium. American Journal of Clinical Nutrition, 2007, 86, 14-24.                                                                            | 2.2 | 168       |
| 93  | Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway. Journal of Hepatology, 2007, 46, 314-321.                                                                   | 1.8 | 175       |
| 94  | Accumulation of proteins bearing atypical isoaspartyl residues in livers of alcohol-fed rats is prevented by betaine administration: Effects on protein-l-isoaspartyl methyltransferase activity. Journal of Hepatology, 2007, 46, 1119-1125.              | 1.8 | 41        |
| 95  | l-Buthionine (S,R) Sulfoximine Depletes Hepatic Glutathione But Protects Against Ethanol-Induced<br>Liver Injury. Alcoholism: Clinical and Experimental Research, 2007, 31, 1053-1060.                                                                     | 1.4 | 28        |
| 96  | Lysosomal Leakage and Lack of Adaptation of Hepatoprotective Enzyme Contribute to Enhanced<br>Susceptibility to Ethanol-Induced Liver Injury in Female Rats. Alcoholism: Clinical and Experimental<br>Research, 2007, 31, 1944-1952.                       | 1.4 | 34        |
| 97  | Role of transmethylation reactions in alcoholic liver disease. World Journal of Gastroenterology, 2007, 13, 4947.                                                                                                                                          | 1.4 | 36        |
| 98  | S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver.<br>American Journal of Physiology - Renal Physiology, 2006, 291, G857-G867.                                                                              | 1.6 | 97        |
| 99  | Malondialdehyde–acetaldehyde adducts decrease bronchial epithelial wound repair. Alcohol, 2005, 36,<br>31-40.                                                                                                                                              | 0.8 | 25        |
| 100 | Role of elevated S-adenosylhomocysteine in rat hepatocyte apoptosis: Protection by betaine.<br>Biochemical Pharmacology, 2005, 70, 1883-1890.                                                                                                              | 2.0 | 86        |
| 101 | A Comparison of the Effects of Betaine and S-Adenosylmethionine on Ethanol-Induced Changes in<br>Methionine Metabolism and Steatosis in Rat Hepatocytes. Journal of Nutrition, 2005, 135, 519-524.                                                         | 1.3 | 70        |
| 102 | Transforming growth factor- $\hat{l}^2$ induces contraction of activated hepatic stellate cells. Journal of Hepatology, 2004, 41, 60-66.                                                                                                                   | 1.8 | 37        |
| 103 | Betaine Lowers Elevated S-Adenosylhomocysteine Levels in Hepatocytes from Ethanol-Fed Rats. Journal of Nutrition, 2003, 133, 2845-2848.                                                                                                                    | 1.3 | 108       |
| 104 | Effect of malondialdehyde–acetaldehyde–protein adducts on the protein kinase C-dependent<br>secretion of urokinase-type plasminogen activator in hepatic stellate cells. Biochemical<br>Pharmacology, 2002, 63, 553-562.                                   | 2.0 | 26        |
| 105 | Chronic ethanol consumption increases homocysteine accumulation in hepatocytes. Alcohol, 2001, 25, 77-81.                                                                                                                                                  | 0.8 | 58        |
| 106 | Malondialdehyde–acetaldehyde–protein adducts increase secretion of chemokines by rat hepatic<br>stellate cells. Alcohol, 2001, 25, 123-128.                                                                                                                | 0.8 | 48        |
| 107 | Malondialdehyde–acetaldehyde-adducted bovine serum albumin activates protein kinase C and<br>stimulates interleukin-8 release in bovine bronchial epithelial cells. Alcohol, 2001, 25, 159-166.<br>                                                        | 0.8 | 34        |
| 108 | Ethanol Feeding Selectively Impairs the Spreading of Rat Perivenous Hepatocytes on Extracellular<br>Matrix Substrates. Alcoholism: Clinical and Experimental Research, 1999, 23, 1673-1680.                                                                | 1.4 | 13        |

| #   | Article                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Ethanol Administration Alters the Proteolytic Activity of Hepatic Lysosomes. Alcoholism: Clinical and Experimental Research, 1994, 18, 536-541. | 1.4 | 56        |