Nithiananthi P

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1321290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp> Bi ₂ S ₃ </scp> can do it all: Sensitizer, counter electrode, and supercapacitor for symmetric solar cell assisted <scp>photoâ€supercapacitor</scp> . International Journal of Energy Research, 2022, 46, 11065-11078.	4.5	13
2	MWCNT Aided Cobalt Antimony Sulfide Electrocatalyst for Dye-Sensitized Solar Cells and Supercapacitors: Designing Integrated Photo-Powered Energy System. Journal of the Electrochemical Society, 2022, 169, 056518.	2.9	11
3	A basic analysis of electrochemical impedance in Bismuth Ferrite based solar cell. Materials Today: Proceedings, 2021, 35, 6-10.	1.8	1
4	Pressure induced transition of direct to indirect excitons in double quantum well: Effect of Γ-X crossover. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114482.	2.7	0
5	Tuning the dynamics of Bound Magnetic Polaron in asymmetric Cd1-x1Mnx1Te/Cd1-x2Mnx2Te Semimagnetic Concentric Double Quantum Rings: Through magnetic ion concentration and magnetic field. Physica B: Condensed Matter, 2021, 600, 412615.	2.7	6
6	Simultaneous effect of laser and magnetic field on bound magnetic polaron in type I and reverse type I core/shell semimagnetic nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114613.	2.7	4
7	Diluted magnetic concentric double quantum rings embedded in a quantum well: effect of magnetic field and ring dimension. European Physical Journal Plus, 2021, 136, 1.	2.6	2
8	Laser Dressed Magnetic Polaron In Semimagnetic Core/Shell Nanostructure. ECS Journal of Solid State Science and Technology, 2021, 10, 081010.	1.8	1
9	Sb2S3 entrenched MWCNT composite as a low-cost Pt-free counter electrode for dye-sensitized solar cell and a viewpoint for a photo-powered energy system. Electrochimica Acta, 2021, 390, 138864.	5.2	31
10	Alternative <scp>low ost</scp> photon sensitizer for <scp>dyeâ€sensitized</scp> solar cells using less explored natural fabric dyes. International Journal of Energy Research, 2021, 45, 7764-7782.	4.5	4
11	Influence of electric field on direct and indirect exciton in a concentrically coupled quantum ring heterostructure embedded in SiO2 matrix. Superlattices and Microstructures, 2020, 137, 106334.	3.1	6
12	TiO2/Graphene Quantum Dots core-shell based photo anodes with TTIP treatment- A perspective way of enhancing the short circuit current. Solar Energy Materials and Solar Cells, 2020, 205, 110239.	6.2	20
13	Magnetization of donor in reversed Type I core shell nanostructures. AIP Conference Proceedings, 2020, , .	0.4	2
14	Exciton Mott transition through diamagnetic susceptibility in a quantum well. AIP Conference Proceedings, 2020, , .	0.4	2
15	Microwave synthesis and analysis of Sb2S3 nanostructures as IR photon-absorber and counter electrode for the design of symmetric solar cells. Materials Letters, 2020, 276, 128160.	2.6	6
16	Hartree-Fock approximation for Exciton Mott transition in double quantum well: Direct and Indirect exciton diamagnetism. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114008.	2.7	4
17	Effect of confining potential on the exciton stability at various locations in a parabolic and square quantum ring. Physica Scripta, 2020, 95, 055102.	2.5	1
18	Stability of indirect and direct excitons through diamagnetic susceptibility in a concentric double quantum ring structure. AIP Conference Proceedings, 2020, , .	0.4	0

Νιτηιαναντηι Ρ

#	Article	IF	CITATIONS
19	Carrier dynamics in quantum ring in a quantum well: Magnetic field and non-parabolicity effects. AIP Conference Proceedings, 2020, , .	0.4	0
20	Indirect to direct exciton transition by laser irradiance in a type II core/ shell quantum dot. Materials Science in Semiconductor Processing, 2019, 103, 104617.	4.0	11
21	Dynamics of bound magnetic polaron in Cd1-xMnxTe/ CdTe core/ shell nanostructure. AIP Conference Proceedings, 2019, , .	0.4	2
22	Enhancing the power conversion efficiency of SrTiO3/CdS/Bi2S3quantum dot based solar cell using phosphor. Applied Surface Science, 2019, 494, 551-560.	6.1	22
23	Polaronic effects on direct and indirect excitons in a ZnSe/MgS double quantum well. AIP Conference Proceedings, 2019, , .	0.4	Ο
24	Estimation of dimensional criticality for direct to indirect exciton transition in a double Quantum Well: Through exciton diamagnetism. Materials Today Communications, 2019, 21, 100725.	1.9	2
25	Performance of TiO2/CdS/Bi2S3 heterostructure based semiconductor sensitized solar cell. AIP Conference Proceedings, 2019, , .	0.4	2
26	Oscillator strength and carrier dynamics in type I and inverted type I spherical core/ shell nanostructures under external laser field. Superlattices and Microstructures, 2019, 135, 106288.	3.1	6
27	Tailoring the electronic properties of concentric double quantum rings in the presence of a donor impurity. Journal of Applied Physics, 2019, 125, .	2.5	10
28	Effect of phosphor on the efficiency of TiO2/CdS/Ag2S heterostructure based solar cells. Materials Letters, 2019, 240, 291-294.	2.6	20
29	Combined effect of stress and nonparabolicity on the diamagnetic susceptibility of donor states in a double quantum well. AIP Conference Proceedings, 2018, , .	0.4	3
30	Effect of non-parabolicity and confinement potential on exciton binding energy in a quantum well. AIP Conference Proceedings, 2018, , .	0.4	3
31	Exciton in a spherical core/shell nanostructure: Influence of surface ligand. AIP Conference Proceedings, 2018, , .	0.4	Ο
32	Effect of confinement potential on exciton diamagnetism in the perspective of constituent carriers in a Quantum Well. Journal of Physics and Chemistry of Solids, 2018, 114, 187-194.	4.0	19
33	On the ZnO/graphene quantum dots (GQDs) based dye sensitized solar cells. AIP Conference Proceedings, 2018, , .	0.4	1
34	Impurity States and diamagnetic susceptibility of a donor in a triangular quantum well. AIP Conference Proceedings, 2017, , .	0.4	3
35	ZnO nanostructures with different morphology for enhanced photocatalytic activity. Materials Research Express, 2017, 4, 124003.	1.6	38
36	Effect of magnetic field on the donor impurity in CdTe/Cd1-xMnxTe quantum well wire. AIP Conference Proceedings, 2016, , .	0.4	2

Νιτηιανάντηι Ρ

#	Article	IF	CITATIONS
37	Diamagnetic susceptibility: An indicator of pressure induced donor localization in a double quantum well. Superlattices and Microstructures, 2016, 92, 232-241.	3.1	11
38	Quantum confinement of a hydrogenic donor in a double quantum well: Through diamagnetic susceptibility. AIP Conference Proceedings, 2015, , .	0.4	1
39	Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot. AIP Conference Proceedings, 2015, , .	0.4	1
40	Effect of geometry on the screened acceptor binding energy in a quantum wire. , 2014, , .		0
41	Coulomb interaction of acceptors in Cd1â^xMnxTe/CdTe quantum dot. , 2014, , .		2
42	Influence of î"-X band mixing on the excited donor in a parabolic quantum well. , 2013, , .		0
43	Effect of ion size of various salts of Chitosan on the electrical properties. AIP Conference Proceedings, 2013, , .	0.4	4
44	EFFECT OF LASER ON THE NONPARABOLICITY OF THE CONDUCTION BAND AND HYDROGENIC IMPURITY STATES IN A SEMICONDUCTOR QUANTUM WELL. International Journal of Modern Physics B, 2011, 25, 1785-1790.	2.0	4
45	LASER INDUCED SEMICONDUCTOR–METAL TRANSITION IN A SEMIMAGNETIC QUANTUM WELL. International Journal of Nanoscience, 2011, 10, 611-615.	0.7	6
46	EFFECT OF DIELECTRIC SCREENING ON THE DIAMAGNETIC SUSCEPTIBILITY OF A DONOR IN LOW DIMENSIONAL SEMICONDUCTING SYSTEMS. International Journal of Modern Physics B, 2009, 23, 2069-2075.	2.0	3
47	Pressure study on the semiconductor–metal transition in a quantum well. Physica Status Solidi (B): Basic Research, 2009, 246, 1238-1242.	1.5	20
48	Effect of laser intensity on the semiconductor–metal transition in a doped Quantum Well. Superlattices and Microstructures, 2009, 46, 710-714.	3.1	14
49	Laser Induced Semiconductor-Metal Transition in a Quantum Well. Journal of Nanoscience and Nanotechnology, 2009, 9, 5669-5672.	0.9	5
50	Shape effect of diamagnetic susceptibility of a hydrogenic donor in a nano structured semiconductor systems. Journal of Mathematical Chemistry, 2008, 44, 743-748.	1.5	29
51	INFLUENCE OF PRESSURE ON THE DIAMAGNETIC SUSCEPTIBILITY OF HYDROGENIC DONOR IN SOME LOW-LYING EXCITED STATES IN A QUANTUM WELL. International Journal of Nanoscience, 2007, 06, 37-40.	0.7	11
52	Semiconductor–Metal transition in a quantum well. Physica B: Condensed Matter, 2007, 391, 113-117.	2.7	15
53	Effect of Γ–X band crossover and impurity location on the diamagnetic susceptibility of a donor in a quantum well. Solid State Communications, 2006, 138, 305-308.	1.9	20
54	EFFECT OF Γ-X CROSSOVER ON THE DONOR BINDING ENERGY IN A QUANTUM WELL. International Journal of Modern Physics B, 2005, 19, 3861-3868.	2.0	10

#	Article	IF	CITATIONS
55	EFFECT OF TEMPERATURE ON THE BINDING ENERGY OF LOW LYING EXCITED STATES IN A QUANTUM WELL. International Journal of Modern Physics B, 2003, 17, 5811-5817.	2.0	23