Livia C Hool

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1321006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interrogating cardiac muscle cell mechanobiology on stiffness gradient hydrogels. Biomaterials Science, 2021, 9, 6795-6806.	2.6	12
2	Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan. Aging Cell, 2021, 20, e13408.	3.0	11
3	Unravelling the mysteries of mitochondria in health and disease. Journal of Physiology, 2021, 599, 3447-3448.	1.3	1
4	A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance. Science Advances, 2021, 7, eabi7514.	4.7	4
5	Neuronal nitric oxide synthase regulation of calcium cycling in ventricular cardiomyocytes is independent of Cav1.2 channel modulation under basal conditions. Pflugers Archiv European Journal of Physiology, 2020, 472, 61-74.	1.3	5
6	Evidence for significance of serine 1487 in \hat{l}^2 -adrenergic regulation of Cav1.2 channel protein function in genetically engineered mice. Journal of Molecular and Cellular Cardiology, 2020, 140, 50.	0.9	0
7	Arrhythmogenic Vulnerability is Associated with Alterations in Ion Channel Expression, Localization and Function in Hypertrophic Cardiomyopathy. Biophysical Journal, 2020, 118, 268a.	0.2	0
8	Fidelity and coordination of mitochondrial protein synthesis in health and disease. Journal of Physiology, 2020, 599, 3449-3462.	1.3	10
9	Characterization and validation of a preventative therapy for hypertrophic cardiomyopathy in a murine model of the disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23113-23124.	3.3	7
10	Preventative therapeutic approaches for hypertrophic cardiomyopathy. Journal of Physiology, 2020, 599, 3495-3512.	1.3	6
11	Ex Vivo Effect of 60 GHz MMW radiation on Leech Neuron Intracellular Calcium Alteration. , 2020, , .		2
12	Lack of Strategic Funding and Long-Term Job Security Threaten to Have Profound Effects on Cardiovascular Researcher Retention in Australia. Heart Lung and Circulation, 2020, 29, 1588-1595.	0.2	10
13	Assessing the effect of dendrimer concentration on cardiomyocyte uptake and clearance. Journal of Molecular and Cellular Cardiology, 2020, 140, 39-40.	0.9	0
14	A dendronized polymer variant that facilitates safe delivery of a calcium channel antagonist to the heart. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102264.	1.7	1
15	L-type Ca ²⁺ channel–mediated Ca ²⁺ influx adjusts neuronal mitochondrial function to physiological and pathophysiological conditions. Science Signaling, 2020, 13, .	1.6	17
16	A Review of in vitro Platforms for Understanding Cardiomyocyte Mechanobiology. Frontiers in Bioengineering and Biotechnology, 2019, 7, 133.	2.0	18
17	TGFâ€Î²â€induced fibrotic stress increases Gâ€quadruplex formation in human fibroblasts. FEBS Letters, 2019, 593, 3149-3161.	1.3	8
18	Millimeter Wave Radiation Activates Leech Nociceptors via TRPV1-Like Receptor Sensitization. Biophysical Journal, 2019, 116, 2331-2345.	0.2	17

#	Article	IF	CITATIONS
19	Impaired calcium handling and mitochondrial metabolic dysfunction as early markers of hypertrophic cardiomyopathy. Archives of Biochemistry and Biophysics, 2019, 665, 166-174.	1.4	18
20	Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions. Nature Communications, 2019, 10, 1396.	5.8	11
21	Mitochondria at the Crossroads of Survival and Demise. Oxidative Medicine and Cellular Longevity, 2019, 1-2.	1.9	5
22	Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO Journal, 2019, 38, e102155.	3.5	21
23	Fidelity of translation initiation is required for coordinated respiratory complex assembly. Science Advances, 2019, 5, eaay2118.	4.7	47
24	Differences and Similarities Between Millimetre Wave and Thermal Heating Effect on Action Potential Triggering in Leech Interneuron. , 2019, , .		0
25	PTCD1 Is Required for 16S rRNA Maturation Complex Stability and Mitochondrial Ribosome Assembly. Cell Reports, 2018, 23, 127-142.	2.9	51
26	Elucidating the Molecular Mechanisms for Activation of the L-Type Calcium Channel in the Fight or Flight Response. Biophysical Journal, 2018, 114, 197a.	0.2	0
27	Development of induced pluripotent stem cells from a patient with hypertrophic cardiomyopathy who carries the pathogenic myosin heavy chain 7 mutation p.Arg403Gln. Stem Cell Research, 2018, 33, 269-273.	0.3	4
28	Comparing efficacy of 8% versus 17% fluorinated dendrimers as delivery vehicles for a peptide in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2018, 120, 40-41.	0.9	0
29	A Morpholino Oligomer Therapy Regime That Restores Mitochondrial Function and Prevents mdx Cardiomyopathy. JACC Basic To Translational Science, 2018, 3, 391-402.	1.9	5
30	A platform for discovery of functional cell-penetrating peptides for efficient multi-cargo intracellular delivery. Scientific Reports, 2018, 8, 12538.	1.6	50
31	Concerted regulation of mitochondrial and nuclear non oding <scp>RNA</scp> s by a dualâ€ŧargeted <scp>RN</scp> ase Z. EMBO Reports, 2018, 19, .	2.0	60
32	Manipulating L-Type Calcium Channel Activity Alters Mitochondrial Function and Prevents Hypertrophic Cardiomyopathy in a Troponin I Mutant Mouse Model. Biophysical Journal, 2017, 112, 243a.	0.2	0
33	Treatment of Adult mdx Mice with Phosphorodiamidate Morpholino Oligomer Restores Cardiac Mitochondrial Energetics and Prevents the Dystrophic Cardiomyopathy. Biophysical Journal, 2017, 112, 245a.	0.2	0
34	L-type calcium channel: Clarifying the "oxygen sensing hypothesis― International Journal of Biochemistry and Cell Biology, 2017, 86, 32-36.	1.2	11
35	The cardiac Lâ€ŧype calcium channel alpha subunit is a target for direct redox modification during oxidative stress—the role of cysteine residues in the alpha interacting domain. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 46-54.	0.9	23
36	Adult-onset obesity is triggered by impaired mitochondrial gene expression. Science Advances, 2017, 3, e1700677.	4.7	36

#	Article	IF	CITATIONS
37	Real-Time Bioimpedance Sensing of Antifibrotic Drug Action in Primary Human Cells. ACS Sensors, 2017, 2, 1482-1490.	4.0	21
38	The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. Journal of the Royal Society Interface, 2017, 14, 20170585.	1.5	99
39	The L-type Ca ²⁺ channel: A mediator of hypertrophic cardiomyopathy. Channels, 2017, 11, 5-7.	1.5	8
40	Identification of a novel cAMP dependent protein kinase A phosphorylation site on the human cardiac calcium channel. Scientific Reports, 2017, 7, 15118.	1.6	13
41	Frequency-specific effects of repetitive magnetic stimulation on primary astrocyte cultures. Restorative Neurology and Neuroscience, 2017, 35, 557-569.	0.4	19
42	Evaluation of a biologically relevant level of MMW radiation absorption in neuronal tissue. , 2017, , .		3
43	Dystrophic Cardiomyopathy—Potential Role of Calcium in Pathogenesis, Treatment and Novel Therapies. Genes, 2017, 8, 108.	1.0	15
44	Auto-regulation in the powerhouse. ELife, 2017, 6, .	2.8	4
45	The Lâ€ŧype Ca ²⁺ channel facilitates abnormal metabolic activity in the <i>cTnlâ€G203S</i> mouse model of hypertrophic cardiomyopathy. Journal of Physiology, 2016, 594, 4051-4070.	1.3	19
46	The impact of non-severe burn injury on cardiac function and long-term cardiovascular pathology. Scientific Reports, 2016, 6, 34650.	1.6	29
47	The Design and Testing of Multifunctional Nanoparticles for Drug Delivery Applications. , 2016, , 1-60.		1
48	Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nature Communications, 2016, 7, 11884.	5.8	73
49	Specific combinations of ion channel inhibitors reduce excessive Ca2+ influx as a consequence of oxidative stress and increase neuronal and glial cell viability in vitro. Neuroscience, 2016, 339, 450-462.	1.1	12
50	Evidence for redox sensing by a human cardiac calcium channel. Scientific Reports, 2016, 6, 19067.	1.6	26
51	Characterising the Effects of a Peptide Directed Against the L-Type Ca2+ Channel on Mitochondrial Function in Hypertrophic Cardiomyopathy. Biophysical Journal, 2016, 110, 450a.	0.2	0
52	The Role of the L-Type Ca2+ Channel in Altered Metabolic Activity in a Murine Model of Hypertrophic Cardiomyopathy. JACC Basic To Translational Science, 2016, 1, 61-72.	1.9	12
53	The potential for nanotechnology to improve delivery of therapy to the acute ischemic heart. Nanomedicine, 2016, 11, 817-832.	1.7	21
54	Morpholino Oligomer Peptide Therapy Improves Mitochondrial Function in mdx Cardiomyopathy. Biophysical Journal, 2015, 108, 581a-582a.	0.2	0

#	Article	IF	CITATIONS
55	Cellular and Molecular Changes to Cortical Neurons Following Low Intensity Repetitive Magnetic Stimulation at Different Frequencies. Brain Stimulation, 2015, 8, 114-123.	0.7	95
56	Choline Kinase Î ² Mutant Mice Exhibit Reduced Phosphocholine, Elevated Osteoclast Activity, and Low Bone Mass. Journal of Biological Chemistry, 2015, 290, 1729-1742.	1.6	24
57	Mutation in MRPS34 Compromises Protein Synthesis and Causes Mitochondrial Dysfunction. PLoS Genetics, 2015, 11, e1005089.	1.5	35
58	Prolonged glutamate excitotoxicity increases GluR1 immunoreactivity but decreases mRNA of GluR1 and associated regulatory proteins inÂdissociated rat retinae inÂvitro. Biochimie, 2015, 112, 160-171.	1.3	10
59	Deranged sodium to sudden death. Journal of Physiology, 2015, 593, 1331-1345.	1.3	46
60	Nanoparticle-Mediated Dual Delivery of an Antioxidant and a Peptide against the L-Type Ca ²⁺ Channel Enables Simultaneous Reduction of Cardiac Ischemia-Reperfusion Injury. ACS Nano, 2015, 9, 279-289.	7.3	64
61	How Does the Heart Sense Changes in Oxygen Tension: A Role for Ion Channels?. Antioxidants and Redox Signaling, 2015, 22, 522-536.	2.5	8
62	Glutathionylation of the L-type Ca2+ Channel in Oxidative Stress-Induced Pathology of the Heart. International Journal of Molecular Sciences, 2014, 15, 19203-19225.	1.8	19
63	Impaired functional communication between the L-type calcium channel and mitochondria contributes to metabolic inhibition in the <i>mdx</i> heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2905-14.	3.3	42
64	Decreased Myocardial Injury and Improved Contractility After Administration of a Peptide Derived Against the Alphaâ€Interacting Domain of the Lâ€Type Calcium Channel. Journal of the American Heart Association, 2014, 3, e000961.	1.6	20
65	How Does Calcium Regulate Mitochondrial Energetics in the Heart? – New Insights. Heart Lung and Circulation, 2014, 23, 602-609.	0.2	21
66	Verapamil is Less Effective than Triamcinolone for Prevention of Keloid Scar Recurrence After Excision in a Randomized Controlled Trial. Acta Dermato-Venereologica, 2014, 96, 774-8.	0.6	24
67	P.11.5 PMO-mediated dystrophin exon 23 skipping restores mitochondrial function in the mdx mouse heart. Neuromuscular Disorders, 2013, 23, 800.	0.3	1
68	AlGaN/GaN-based biosensor for label-free detection of biological activity. Sensors and Actuators B: Chemical, 2013, 177, 577-582.	4.0	18
69	Examining Efficacy of "TAT-less―Delivery of a Peptide against the L-Type Calcium Channel in Cardiac Ischemia–Reperfusion Injury. ACS Nano, 2013, 7, 2212-2220.	7.3	28
70	A novel antimicrobial agent reduces oxidative stress in cells. RSC Advances, 2013, 3, 7277-7281.	1.7	10
71	L-type Ca ²⁺ channel contributes to alterations in mitochondrial calcium handling in the <i>mdx</i> ventricular myocyte. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H767-H775.	1.5	45
72	Regulator of G-Protein Signaling 5 Controls Blood Pressure Homeostasis and Vessel Wall Remodeling. Circulation Research, 2013, 112, 781-791.	2.0	61

#	Article	IF	CITATIONS
73	The Role of the Cysteine-Rich Domain and Netrin-Like Domain of Secreted Frizzled-Related Protein 4 in Angiogenesis Inhibition In Vitro. Oncology Research, 2012, 20, 1-6.	0.6	26
74	Nanoparticle-mediated internalisation and release of a calcium channel blocker. RSC Advances, 2012, 2, 8587.	1.7	9
75	Evidence for Altered Communication Between the L-Type Ca2+ Channel and Mitochondria in a Model of Cardiomyopathy. Biophysical Journal, 2012, 102, 128a-129a.	0.2	0
76	Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca2+-ATPase activity and perturb Ca2+ homeostasis in human coronary artery endothelial cells. Free Radical Biology and Medicine, 2012, 52, 951-961.	1.3	42
77	Bone marrow stromal cells as replacement cells for Parkinson's disease: generation of an anatomical but not functional neuronal phenotype. Translational Research, 2011, 157, 56-63.	2.2	25
78	Editorial [Hot Topic: Calcium Regulatory Proteins as Therapeutic Targets (Guest Editor: Livia C. Hool)]. Current Drug Targets, 2011, 12, 707-708.	1.0	0
79	Cav1.2 calcium channel is glutathionylated during oxidative stress in guinea pig and ischemic human heart. Free Radical Biology and Medicine, 2011, 51, 1501-1511.	1.3	46
80	Myeloperoxidase-derived Oxidants Inhibit SERCA Activity and Perturb Ca2+ Homeostasis in Human Coronary Artery Endothelial Cells. Free Radical Biology and Medicine, 2011, 51, S27.	1.3	0
81	Targeting Calcium and the Mitochondria in Prevention of Pathology in the Heart. Current Drug Targets, 2011, 12, 748-760.	1.0	17
82	Crossâ€ŧalk between Lâ€ŧype Ca ²⁺ channels and mitochondria. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 229-235.	0.9	24
83	Evidence of Altered Guinea Pig Ventricular Cardiomyocyte Protein Expression and Growth in Response to a 5 min in vitro Exposure to H ₂ O ₂ . Journal of Proteome Research, 2010, 9, 1985-1994.	1.8	26
84	Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide. Journal of Molecular and Cellular Cardiology, 2010, 49, 875-885.	0.9	27
85	Secreted Frizzled-Related Protein 4. American Journal of Pathology, 2010, 176, 1505-1516.	1.9	78
86	Contributions of Ion Channel Currents to Ventricular Action Potential Changes and Induction of Early Afterdepolarizations During Acute Hypoxia. Circulation Research, 2009, 105, 1196-1203.	2.0	38
87	Evidence for regulation of mitochondrial function by the L-type Ca2+ channel in ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2009, 46, 1016-1026.	0.9	63
88	Changes in oxygen tension affect cardiac mitochondrial respiration rate via changes in the rate of mitochondrial hydrogen peroxide production. Journal of Molecular and Cellular Cardiology, 2009, 47, 49-56.	0.9	8
89	The L-type Ca2+ Channel as a Potential Mediator of Pathology During Alterations in Cellular Redox State. Heart Lung and Circulation, 2009, 18, 3-10.	0.2	31
90	ldentifying The Site Of The Source Of Reactive Oxygen Species Within The Mitochondria After Transient Exposure Of Cardiac Myocytes To Hydrogen Peroxide. Biophysical Journal, 2009, 96, 244a.	0.2	0

#	Article	IF	CITATIONS
91	The L-Type Ca2+ Channel as a Therapeutic Target in Heart Disease. Current Medicinal Chemistry, 2009, 16, 3341-3358.	1.2	15
92	EVIDENCE FOR THE REGULATION OF Lâ€TYPE Ca ²⁺ CHANNELS IN THE HEART BY REACTIVE OXYGEN SPECIES: MECHANISM FOR MEDIATING PATHOLOGY. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 229-234.	0.9	50
93	A new methodology for assessment of the performance of heartbeat classification systems. BMC Medical Informatics and Decision Making, 2008, 8, 7.	1.5	3
94	Mechanosensitive channel of large conductance. International Journal of Biochemistry and Cell Biology, 2008, 40, 164-169.	1.2	27
95	MscS, the bacterial mechanosensitive channel of small conductance. International Journal of Biochemistry and Cell Biology, 2008, 40, 581-585.	1.2	19
96	The Role of Calcium and the L-Type Calcium Channel in Pathological Remodeling of the Heart. Vascular Disease Prevention, 2008, 5, 104-115.	0.2	0
97	The Role of Calcium and the L-Type Calcium Channel in Pathological Remodeling of the Heart. Vascular Disease Prevention, 2008, 5, 104-115.	0.2	1
98	The Effect of Acute Hypoxia on Excitability in the Heart and the L-Type Calcium Channel as a Therapeutic Target. Current Drug Discovery Technologies, 2008, 5, 302-311.	0.6	12
99	Transient Exposure to Hydrogen Peroxide Causes an Increase in Mitochondria-Derived Superoxide As a Result of Sustained Alteration in L-Type Ca 2+ Channel Function in the Absence of Apoptosis in Ventricular Myocytes. Circulation Research, 2007, 100, 1036-1044.	2.0	125
100	What Cardiologists Should Know About Calcium Ion Channels and Their Regulation by Reactive Oxygen Species. Heart Lung and Circulation, 2007, 16, 361-372.	0.2	12
101	Redox Control of Calcium Channels: From Mechanisms to Therapeutic Opportunities. Antioxidants and Redox Signaling, 2007, 9, 409-435.	2.5	147
102	Regenerating optic axons restore topography after incomplete optic nerve injury. Journal of Comparative Neurology, 2007, 505, 46-57.	0.9	12
103	Calcium Channels. , 2007, , 241-299.		1
104	REACTIVE OXYGEN SPECIES IN CARDIAC SIGNALLING: FROM MITOCHONDRIA TO PLASMA MEMBRANE ION CHANNELS. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 146-151.	0.9	70
105	Acute hypoxia differentially regulates K+ channels. Implications with respect to cardiac arrhythmia. European Biophysics Journal, 2005, 34, 369-376.	1.2	17
106	Role of NAD(P)H oxidase in the regulation of cardiac L-type Ca channel function during acute hypoxia. Cardiovascular Research, 2005, 67, 624-635.	1.8	60
107	Protein Kinase C Isozyme Selective Peptides - A Current View of What they Tell Us About Location and Function of Isozymes in the Heart. Current Pharmaceutical Design, 2005, 11, 549-559.	0.9	11
108	Differential regulation of the slow and rapid components of guinea-pig cardiac delayed rectifier K+channels by hypoxia. Journal of Physiology, 2004, 554, 743-754.	1.3	19

#	Article	IF	CITATIONS
109	Decreasing Cellular Hydrogen Peroxide With Catalase Mimics the Effects of Hypoxia on the Sensitivity of the L-Type Ca 2+ Channel to β-Adrenergic Receptor Stimulation in Cardiac Myocytes. Circulation Research, 2002, 91, 601-609.	2.0	70
110	Can Integrins Integrate Vascular Myogenic Responses?. Circulation Research, 2002, 90, 371-373.	2.0	7
111	Hypoxia Alters the Sensitivity of the L-Type Ca 2+ Channel to α-Adrenergic Receptor Stimulation in the Presence of β-Adrenergic Receptor Stimulation. Circulation Research, 2001, 88, 1036-1043.	2.0	38
112	Hypoxia Increases the Sensitivity of the L-Type Ca ²⁺ Current to β-Adrenergic Receptor Stimulation via a C2 Region–Containing Protein Kinase C Isoform. Circulation Research, 2000, 87, 1164-1171.	2.0	78
113	Genistein Increases the Sensitivity of Cardiac Ion Channels to β-Adrenergic Receptor Stimulation. Circulation Research, 1998, 83, 33-42.	2.0	50
114	Role of β1- and β2-adrenergic receptors in regulation of Cl− and Ca2+ channels in guinea pig ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H1669-H1676.	1.5	23
115	Role of G Proteins in α1-Adrenergic Inhibition of the β-Adrenergically Activated Chloride Current in Cardiac Myocytes. Molecular Pharmacology, 1997, 51, 853-860.	1.0	17
116	α ₁ -Adrenergic Inhibition of the β-Adrenergically Activated Cl ^{â^'} Current in	2.0	24

Guinea Pig Ventricular Myocytes. Circulation Research, 1996, 78, 1090-1099. 116 1