Michael H Baumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1320826/publications.pdf Version: 2024-02-01

		28274	33894
215	11,957	55	99
papers	citations	h-index	g-index
217	217	217	7834
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse, 2001, 39, 32-41.	1.2	825
2	Evidence for Possible Involvement of 5-HT _{2B} Receptors in the Cardiac Valvulopathy Associated With Fenfluramine and Other Serotonergic Medications. Circulation, 2000, 102, 2836-2841.	1.6	659
3	Monoamine transporters and psychostimulant drugs. European Journal of Pharmacology, 2003, 479, 23-40.	3.5	414
4	The Designer Methcathinone Analogs, Mephedrone and Methylone, are Substrates for Monoamine Transporters in Brain Tissue. Neuropsychopharmacology, 2012, 37, 1192-1203.	5.4	386
5	Powerful Cocaine-Like Actions of 3,4-Methylenedioxypyrovalerone (MDPV), a Principal Constituent of Psychoactive â€ [~] Bath Salts' Products. Neuropsychopharmacology, 2013, 38, 552-562.	5.4	361
6	Depressive-Like Effects of the κ-Opioid Receptor Agonist Salvinorin A on Behavior and Neurochemistry in Rats. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 440-447.	2.5	340
7	Misuse of Novel Synthetic Opioids: A Deadly New Trend. Journal of Addiction Medicine, 2017, 11, 256-265.	2.6	225
8	3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology, 2007, 189, 407-424.	3.1	214
9	N-Substituted Piperazines Abused by Humans Mimic the Molecular Mechanism of 3,4-Methylenedioxymethamphetamine (MDMA, or †̃Ecstasy'). Neuropsychopharmacology, 2005, 30, 550-560.	5.4	211
10	Aminorex, Fenfluramine, and Chlorphentermine Are Serotonin Transporter Substrates. Circulation, 1999, 100, 869-875.	1.6	201
11	Psychoactive "bath salts― Not so soothing. European Journal of Pharmacology, 2013, 698, 1-5.	3.5	183
12	Relationship between the Serotonergic Activity and Reinforcing Effects of a Series of Amphetamine Analogs. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 848-854.	2.5	182
13	Pharmacology of novel synthetic stimulants structurally related to the "bath salts―constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology, 2014, 87, 206-213.	4.1	176
14	Nitric oxide inhibits [3H]dopamine uptake. Brain Research, 1994, 641, 83-91.	2.2	173
15	Evidence for the Involvement of Dopamine Transporters in Behavioral Stimulant Effects of Modafinil. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 738-746.	2.5	169
16	Therapeutic and adverse actions of serotonin transporter substrates. , 2002, 95, 73-88.		156
17	Baths Salts, Spice, and Related Designer Drugs: The Science Behind the Headlines. Journal of Neuroscience, 2014, 34, 15150-15158.	3.6	133
18	Serotonergic drugs and valvular heart disease. Expert Opinion on Drug Safety, 2009, 8, 317-329.	2.4	128

#	Article	IF	CITATIONS
19	Serotonin releasing agents. Pharmacology Biochemistry and Behavior, 2002, 71, 825-836.	2.9	124
20	Interaction of Amphetamines and Related Compounds at the Vesicular Monoamine Transporter. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 237-246.	2.5	119
21	The role of corticosterone in food deprivation-induced reinstatement of cocaine seeking in the rat. Psychopharmacology, 2003, 168, 170-176.	3.1	116
22	Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug and Alcohol Dependence, 2015, 147, 1-19.	3.2	116
23	Neuropharmacology of 3,4-Methylenedioxypyrovalerone (MDPV), Its Metabolites, and Related Analogs. Current Topics in Behavioral Neurosciences, 2016, 32, 93-117.	1.7	113
24	Balance between Dopamine and Serotonin Release Modulates Behavioral Effects of Amphetamine-Type Drugs. Annals of the New York Academy of Sciences, 2006, 1074, 245-260.	3.8	108
25	Effect of Chronic Delivery of the Toll-like Receptor 4 Antagonist (+)-Naltrexone on Incubation of Heroin Craving. Biological Psychiatry, 2013, 73, 729-737.	1.3	106
26	Locomotor stimulation produced by 3,4-methylenedioxymethamphetamine (MDMA) is correlated with dialysate levels of serotonin and dopamine in rat brain. Pharmacology Biochemistry and Behavior, 2008, 90, 208-217.	2.9	97
27	In Vivo Effects of Amphetamine Analogs Reveal Evidence for Serotonergic Inhibition of Mesolimbic Dopamine Transmission in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 218-225.	2.5	95
28	Identification of a primary metabolite of ibogaine that targets serotonin transporters and elevates serotonin. Life Sciences, 1995, 57, PL45-PL50.	4.3	93
29	Effects of intravenous cocaine on plasma cortisol and prolactin in human cocaine abusers. Biological Psychiatry, 1995, 38, 751-755.	1.3	88
30	Alterations in serotonergic responsiveness during cocaine withdrawal in rats: similarities to major depression in humans. Biological Psychiatry, 1998, 44, 578-591.	1.3	87
31	Reinforcing and neurochemical effects of the "bath salts―constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats. Psychopharmacology, 2016, 233, 1981-1990.	3.1	87
32	â€~Second-Generation' Mephedrone Analogs, 4-MEC and 4-MePPP, Differentially Affect Monoamine Transporter Function. Neuropsychopharmacology, 2015, 40, 1321-1331.	5.4	86
33	Development of a Rationally Designed, Low Abuse Potential, Biogenic Amine Releaser That Suppresses Cocaine Self-Administration. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1361-1369.	2.5	83
34	Linear pharmacokinetics of 3,4â€methylenedioxypyrovalerone (<scp>MDPV</scp>) and its metabolites in the rat: relationship to pharmacodynamic effects. Addiction Biology, 2016, 21, 339-347.	2.6	83
35	3,4â€methylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Synapse, 2004, 53, 240-248.	1.2	82
36	An n-3 fatty acid deficiency impairs rat spatial learning in the Barnes maze Behavioral Neuroscience, 2009, 123, 196-205.	1.2	80

#	Article	IF	CITATIONS
37	Pharmacological characterization of novel synthetic opioids (NSO) found in the recreational drug marketplace. Neuropharmacology, 2018, 134, 101-107.	4.1	78
38	Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochemical Pharmacology, 2008, 75, 2-16.	4.4	77
39	Lack of evidence for context-dependent cocaine-induced sensitization in humans: Preliminary studies. Pharmacology Biochemistry and Behavior, 1994, 49, 583-588.	2.9	75
40	Neurochemical neutralization of methamphetamine with high-affinity nonselective inhibitors of biogenic amine transporters: a pharmacological strategy for treating stimulant abuse. , 2000, 35, 222-227.		75
41	(+)-Fenfluramine and Its Major Metabolite, (+)-Norfenfluramine, Are Potent Substrates for Norepinephrine Transporters. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 1191-1199.	2.5	70
42	Monoamine Releasers with Varying Selectivity for Dopamine/Norepinephrine versus Serotonin Release as Candidate "Agonist―Medications for Cocaine Dependence: Studies in Assays of Cocaine Discrimination and Cocaine Self-Administration in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 627-636.	2,5	70
43	Monoaminergic Regulation of Neuroendocrine Function and Its Modification by Cocaine. Frontiers in Neuroendocrinology, 1994, 15, 85-156.	5.2	69
44	Pharmacological mechanisms underlying the cardiovascular effects of the "bath salt―constituent 3,4â€methylenedioxypyrovalerone (MDPV). British Journal of Pharmacology, 2016, 173, 3492-3501.	5.4	69
45	Effects of Dose and Route of Administration on Pharmacokinetics of (±)-3,4-Methylenedioxymethamphetamine in the Rat. Drug Metabolism and Disposition, 2009, 37, 2163-2170.	3.3	68
46	Effects of dopamine and serotonin-releasing agents on methamphetamine discrimination and self-administration in rats. Psychopharmacology, 1999, 141, 287-296.	3.1	67
47	Interaction of the anorectic medication, phendimetrazine, and its metabolites with monoamine transporters in rat brain. European Journal of Pharmacology, 2002, 447, 51-57.	3.5	67
48	Stereochemistry of mephedrone neuropharmacology: enantiomerâ€specific behavioural and neurochemical effects in rats. British Journal of Pharmacology, 2015, 172, 883-894.	5.4	67
49	Effects of "Legal X―Piperazine Analogs on Dopamine and Serotonin Release in Rat Brain. Annals of the New York Academy of Sciences, 2004, 1025, 189-197.	3.8	66
50	Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology, 2014, 231, 4135-4144.	3.1	64
51	The abuse-related effects of pyrrolidine-containing cathinones are related to their potency and selectivity to inhibit the dopamine transporter. Neuropsychopharmacology, 2018, 43, 2399-2407.	5.4	64
52	Development of Long-Acting Dopamine Transporter Ligands as Potential Cocaine-Abuse Therapeutic Agents:  Chiral Hydroxyl-Containing Derivatives of 1-[2-[Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine and 1-[2-(Diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine. Journal of Medicinal Chemistry, 2002, 45,	6.4	62
53	Neuropharmacology of Synthetic Cathinones. Handbook of Experimental Pharmacology, 2018, 252, 113-142.	1.8	61
54	Appetite Suppressants, Cardiac Valve Disease and Combination Pharmacotherapy. American Journal of Therapeutics, 2009, 16, 354-364.	0.9	60

#	Article	IF	CITATIONS
55	Medial Prefrontal Cortex Neuronal Activation and Synaptic Alterations after Stress-Induced Reinstatement of Palatable Food Seeking: A Study Using c-fos-GFP Transgenic Female Rats. Journal of Neuroscience, 2012, 32, 8480-8490.	3.6	60
56	Tolerance to 3,4-methylenedioxymethamphetamine in rats exposed to single high-dose binges. Neuroscience, 2008, 152, 773-784.	2.3	59
57	Dual dopamine/serotonin releasers: Potential treatment agents for stimulant addiction Experimental and Clinical Psychopharmacology, 2008, 16, 458-474.	1.8	57
58	1-(m-Chlorophenyl)piperazine (mCPP) Dissociates In Vivo Serotonin Release from Long-Term Serotonin Depletion in Rat Brain. Neuropsychopharmacology, 2001, 24, 492-501.	5.4	56
59	High-dose fenfluramine administration decreases serotonin transporter binding, but not serotonin transporter protein levels, in rat forebrain. Synapse, 2003, 50, 233-239.	1.2	56
60	Synthesis and Pharmacological Evaluation of 3-(3,4-Dichlorophenyl)-1-indanamine Derivatives as Nonselective Ligands for Biogenic Amine Transporters. Journal of Medicinal Chemistry, 2004, 47, 2624-2634.	6.4	56
61	(±)-3,4-Methylenedioxymethamphetamine Administration to Rats Does Not Decrease Levels of the Serotonin Transporter Protein or Alter Its Distribution between Endosomes and the Plasma Membrane. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1002-1012.	2.5	56
62	Amphetamine Analogs Increase Plasma Serotonin: Implications for Cardiac and Pulmonary Disease. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 604-610.	2.5	56
63	Dual dopamine/serotonin releasers as potential medications for stimulante and alcohol addictions. AAPS Journal, 2007, 9, E1-E10.	4.4	55
64	Biosynthesis of dopamine and serotonin in the rat brain after repeated cocaine injections: A microdissection mapping study. Synapse, 1993, 14, 40-50.	1.2	54
65	Abuse of New Psychoactive Substances: Threats and Solutions. Neuropsychopharmacology, 2016, 41, 663-665.	5.4	54
66	Therapeutic Potential of Monoamine Transporter Substrates. Current Topics in Medicinal Chemistry, 2006, 6, 1845-1859.	2.1	53
67	Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters. Molecular Pharmacology, 2016, 89, 165-175.	2.3	53
68	Orphanin FQ stimulates prolactin and growth hormone release in male and female rats. Brain Research, 1998, 807, 228-233.	2.2	50
69	The serotonin agonist m-chloropheny piperazine (mCPP) binds to serotonin transporter sites in human brain. NeuroReport, 1995, 6, 2150-2152.	1.2	48
70	Critical Role of Peripheral Vasoconstriction in Fatal Brain Hyperthermia Induced by MDMA (Ecstasy) under Conditions That Mimic Human Drug Use. Journal of Neuroscience, 2014, 34, 7754-7762.	3.6	48
71	Awash in a sea of â€`bath salts': implications for biomedical research and public health. Addiction, 2014, 109, 1577-1579.	3.3	48
72	Phentermine and Fenfluramine: Preclinical Studies in Animal Models of Cocaine Addiction. Annals of the New York Academy of Sciences, 1998, 844, 59-74.	3.8	47

#	Article	IF	CITATIONS
73	Noradrenergic and dopaminergic effects of (+)-amphetamine-like stimulants in the baboonPapio anubis. Synapse, 2005, 56, 94-99.	1.2	47
74	Pharmacological Research as a Key Component in Mitigating the Opioid Overdose Crisis. Trends in Pharmacological Sciences, 2018, 39, 995-998.	8.7	47
75	Evidence for alterations in presynaptic serotonergic function during withdrawal from chronic cocaine in rats. European Journal of Pharmacology, 1995, 282, 87-93.	3.5	46
76	Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs. European Journal of Pharmacology, 2013, 699, 180-187.	3.5	46
77	Inhibition of Tuberoinfundibular Dopaminergic Neural Activity During Suckling: Involvement of μ andκOpiate Receptor Subtypes. Journal of Neuroendocrinology, 1996, 8, 771-776.	2.6	45
78	Functional Consequences of Central Serotonin Depletion Produced by Repeated Fenfluramine Administration in Rats. Journal of Neuroscience, 1998, 18, 9069-9077.	3.6	44
79	Hybrid Dopamine Uptake Blocker–Serotonin Releaser Ligands: A New Twist on Transporter-Focused Therapeutics. ACS Medicinal Chemistry Letters, 2014, 5, 623-627.	2.8	43
80	Selectivity and sensitivity of urine fentanyl test strips to detect fentanyl analogues in illicit drugs. International Journal of Drug Policy, 2021, 90, 103065.	3.3	43
81	Persistent Antagonism of Methamphetamine-Induced Dopamine Release in Rats Pretreated with GBR12909 Decanoate. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 1190-1197.	2.5	42
82	Comparative neuropharmacology of N-(2-methoxybenzyl)-2,5-dimethoxyphenethylamine (NBOMe) hallucinogens and their 2C counterparts in male rats. Neuropharmacology, 2018, 142, 240-250.	4.1	42
83	Behavioural and neurochemical characteristics of phentermine and fenfluramine administered separately and as a mixture in rats. Psychopharmacology, 1997, 131, 296-306.	3.1	41
84	Neural and Cardiac Toxicities Associated With 3,4-Methylenedioxymethamphetamine (MDMA). International Review of Neurobiology, 2009, 88, 257-296.	2.0	41
85	3,4-Methylenedioxypyrovalerone (MDPV) and metabolites quantification in human and rat plasma by liquid chromatography–high resolution mass spectrometry. Analytica Chimica Acta, 2014, 827, 54-63.	5.4	40
86	Dual dopamine–5-HT releasers: potential treatment agents for cocaine addiction. Trends in Pharmacological Sciences, 2006, 27, 612-618.	8.7	39
87	Analytical quantification, intoxication case series, and pharmacological mechanism of action for N â€ethylnorpentylone (N â€ethylpentylone or ephylone). Drug Testing and Analysis, 2019, 11, 461-471.	2.6	39
88	Appetite Suppressants as Agonist Substitution Therapies for Stimulant Dependence. Annals of the New York Academy of Sciences, 2002, 965, 109-126.	3.8	38
89	Dopamine/serotonin releasers as medications for stimulant addictions. Progress in Brain Research, 2008, 172, 385-406.	1.4	38
90	Effects of Social Interaction and Warm Ambient Temperature on Brain Hyperthermia Induced by the Designer Drugs Methylone and MDPV. Neuropsychopharmacology, 2015, 40, 436-445.	5.4	36

#	Article	IF	CITATIONS
91	Disruption of hippocampal synaptic transmission and longâ€ŧerm potentiation by psychoactive synthetic cannabinoid â€̃Spice' compounds: comparison with l" ⁹ â€ŧetrahydrocannabinol. Addiction Biology, 2017, 22, 390-399.	2.6	36
92	Studies of the Biogenic Amine Transporters. 14. Identification of Low-Efficacy "Partial―Substrates for the Biogenic Amine Transporters. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 251-262.	2.5	35
93	Effect of fenfluramine on reinstatement of food seeking in female and male rats: implications for the predictive validity of the reinstatement model. Psychopharmacology, 2012, 221, 341-353.	3.1	35
94	Selective Suppression of Cocaine- versus Food-Maintained Responding by Monoamine Releasers in Rhesus Monkeys: Benzylpiperazine, (+)Phenmetrazine, and 4-Benzylpiperidine. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 272-281.	2.5	34
95	Evidence for a Role of Transporter-Mediated Currents in the Depletion of Brain Serotonin Induced by Serotonin Transporter Substrates. Neuropsychopharmacology, 2014, 39, 1355-1365.	5.4	34
96	Synthetic cannabinoids found in "spice―products alter body temperature and cardiovascular parameters in conscious male rats. Drug and Alcohol Dependence, 2017, 179, 387-394.	3.2	34
97	Conformational state interactions provide clues to the pharmacochaperone potential of serotonin transporter partial substrates. Journal of Biological Chemistry, 2017, 292, 16773-16786.	3.4	34
98	Chapter 5 Comparative neuropharmacology of ibogaine and its O-desmethyl metabolite, noribogaine. The Alkaloids Chemistry and Biology, 2001, 56, 79-113.	2.0	33
99	Evidence for alterations in $\hat{l}\pm 2$ -adrenergic receptor sensitivity in rats exposed to repeated cocaine administration. Neuroscience, 2004, 125, 683-690.	2.3	33
100	Effects of stress modulation on morphine-induced conditioned place preferences and plasma corticosterone levels in Fischer, Lewis, and Sprague–Dawley rat strains. Psychopharmacology, 2006, 189, 277-286.	3.1	33
101	Effects of 3,4â€methylenedioxymethamphetamine (<scp>MDMA</scp>) and its main metabolites on cardiovascular function in conscious rats. British Journal of Pharmacology, 2014, 171, 83-91.	5.4	33
102	Trace amine-associated receptor 1 regulation of methamphetamine-induced neurotoxicity. NeuroToxicology, 2017, 63, 57-69.	3.0	33
103	Characterization of a novel and potentially lethal designer drug <i>(±)â€cisâ€para</i> â€methylâ€4â€methylaminorex (4,4'â€DMAR, or â€~Serotoni'). Drug Testing and Ana 684-695.	ly zis , 201	4, \$\$2
104	Impact of Novel Psychoactive Substances on Clinical and Forensic Toxicology and Global Public Health. Clinical Chemistry, 2017, 63, 1564-1569.	3.2	31
105	Inhibition of suckling-induced prolactin release by μ- and κ-opioid antagonists. Brain Research, 1991, 567, 224-230.	2.2	30
106	Noribogaine (12â€Hydroxyibogamine): A Biologically Active Metabolite of the Antiaddictive Drug Ibogaine. Annals of the New York Academy of Sciences, 2000, 914, 354-368.	3.8	30
107	Chronic Fenfluramine Administration Increases Plasma Serotonin (5-Hydroxytryptamine) to Nontoxic Levels. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 791-797.	2.5	29
108	U-47700 and Its Analogs: Non-Fentanyl Synthetic Opioids Impacting the Recreational Drug Market. Brain Sciences, 2020, 10, 895.	2.3	29

#	Article	IF	CITATIONS
109	Nonlinear Pharmacokinetics of (±)3,4-Methylenedioxymethamphetamine (MDMA) and Its Pharmacodynamic Consequences in the Rat. Drug Metabolism and Disposition, 2014, 42, 119-125.	3.3	28
110	Alpha-ethyltryptamines as dual dopamine–serotonin releasers. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4754-4758.	2.2	28
111	Pharmacokinetic Profiles and Pharmacodynamic Effects for Methylone and Its Metabolites in Rats. Neuropsychopharmacology, 2017, 42, 649-660.	5.4	27
112	Chronic cocaine exposure potentiates prolactin and head shake responses to 5-HT2 receptor stimulation in rats. Neuropharmacology, 1996, 35, 295-301.	4.1	26
113	Endocrine responses during acute nicotine withdrawal. Pharmacology Biochemistry and Behavior, 1996, 55, 433-437.	2.9	26
114	Neurochemical mechanisms of phentermine and fenfluramine: Therapeutic and adverse effects. Drug Development Research, 2000, 51, 52-65.	2.9	26
115	Studies of the Biogenic Amine Transporters 15. Identification of Novel Allosteric Dopamine Transporter Ligands with Nanomolar Potency. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 529-538.	2.5	26
116	Cadherin 13: Human cis-Regulation and Selectively Altered Addiction Phenotypes and Cerebral Cortical Dopamine in Knockout Mice. Molecular Medicine, 2016, 22, 537-547.	4.4	26
117	N-Alkylated Analogs of 4-Methylamphetamine (4-MA) Differentially Affect Monoamine Transporters and Abuse Liability. Neuropsychopharmacology, 2017, 42, 1950-1961.	5.4	26
118	Neuroendocrine and neurochemical effects of acute ibogaine administration: a time course evaluation. Brain Research, 1996, 737, 215-220.	2.2	25
119	Systemically administered cocaine alters stimulus-evoked responses of thalamic somatosensory neurons to perithreshold vibrissae stimulation. Brain Research, 1998, 798, 7-17.	2.2	25
120	Effects of Chronic Social Stress on Neuroendocrine Responsiveness to Challenge with Ethanol, Dexamethasone and Corticotropin-Releasing Hormone. Neuroendocrinology, 2004, 80, 332-342.	2.5	25
121	Effects of MDMA and related analogs on plasma 5-HT: Relevance to 5-HT transporters in blood and brain. European Journal of Pharmacology, 2012, 674, 337-344.	3.5	25
122	Differential neuroendocrine responsiveness to morphine in Lewis, Fischer 344, and ACI inbred rats. Brain Research, 2000, 858, 320-326.	2.2	24
123	Newly Developed Dopamine D ₃ Receptor Antagonists, <i>R</i> -VK4-40 and <i>R</i> -VK4-116, Do Not Potentiate Cardiovascular Effects of Cocaine or Oxycodone in Rats. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 602-614.	2.5	24
124	Synthesis, characterization and monoamine transporter activity of the new psychoactive substance mexedrone and its <i>N</i> â€methoxy positional isomer, <i>N</i> â€methoxymephedrone. Drug Testing and Analysis, 2017, 9, 358-368.	2.6	23
125	Repeated Exposure to the "Spice―Cannabinoid JWH-018 Induces Tolerance and Enhances Responsiveness to 5-HT1A Receptor Stimulation in Male Rats. Frontiers in Psychiatry, 2018, 9, 55.	2.6	23
126	Metabolites of the ring-substituted stimulants MDMA, methylone and MDPV differentially affect human monoaminergic systems. Journal of Psychopharmacology, 2019, 33, 831-841.	4.0	23

#	Article	IF	CITATIONS
127	Serotonin (5-HT) precursor loading with 5-hydroxy-l-tryptophan (5-HTP) reduces locomotor activation produced by (+)-amphetamine in the rat. Drug and Alcohol Dependence, 2010, 114, 147-52.	3.2	22
128	Deconstructed Analogues of Bupropion Reveal Structural Requirements for Transporter Inhibition versus Substrate-Induced Neurotransmitter Release. ACS Chemical Neuroscience, 2017, 8, 1397-1403.	3.5	22
129	Fluorinated phenmetrazine "legal highs―act as substrates for high-affinity monoamine transporters of the SLC6 family. Neuropharmacology, 2018, 134, 149-157.	4.1	22
130	Pharmacological evaluation and forensic case series of N-pyrrolidino etonitazene (etonitazepyne), a newly emerging 2-benzylbenzimidazole â€~nitazene' synthetic opioid. Archives of Toxicology, 2022, 96, 1845-1863.	4.2	22
131	Effects of acute and chronic cocaine on the activity of tuberoinfundibular dopamine neurons in the rat. Brain Research, 1993, 608, 175-179.	2.2	21
132	Transcranial photoacoustic imaging of NMDA-evoked focal circuit dynamics in the rat hippocampus. Journal of Neural Engineering, 2020, 17, 025001.	3.5	21
133	Alterations in alcohol consumption, withdrawal seizures, and monoamine transmission in rats treated with phentermine and 5-hydroxy-L-tryptophan. Synapse, 2006, 59, 277-289.	1.2	20
134	Restoration of 3,4-methylenedioxymethamphetamine-induced 5-HT depletion by the administration of l-5-hydroxytryptophan. Neuroscience, 2007, 148, 212-220.	2.3	20
135	Serotonin (5â€HT) Transporter Ligands Affect Plasma 5â€HT in Rats. Annals of the New York Academy of Sciences, 2008, 1139, 268-284.	3.8	20
136	Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats. European Neuropsychopharmacology, 2016, 26, 288-297.	0.7	20
137	The new psychoactive substances 5-(2-aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-IT) interact with monoamine transporters in brain tissue. Neuropharmacology, 2016, 101, 68-75.	4.1	20
138	The synthetic cathinones, butylone and pentylone, are stimulants that act as dopamine transporter blockers but 5-HT transporter substrates. Psychopharmacology, 2019, 236, 953-962.	3.1	20
139	Repeated cocaine administration reduces 5-HT1A-mediated prolactin secretion in rats. Neuroscience Letters, 1995, 193, 9-12.	2.1	19
140	Positive Allosteric Modulation of the 5-HT _{1A} Receptor by Indole-Based Synthetic Cannabinoids Abused by Humans. ACS Chemical Neuroscience, 2020, 11, 1400-1405.	3.5	19
141	Optogenetic brainâ€stimulation reward: A new procedure to reâ€evaluate the rewarding <i>versus</i> aversive effects of cannabinoids in dopamine transporterâ€Cre mice. Addiction Biology, 2021, 26, e13005.	2.6	19
142	Withdrawal from chronic cocaine enhances behavioral sensitivity to the 5-HT2/1C agonist DOI. Biological Psychiatry, 1993, 34, 576-577.	1.3	18
143	Methamphetamine Dependence: Medication Development Efforts Based on the Dual Deficit Model of Stimulant Addiction. Annals of the New York Academy of Sciences, 2000, 914, 71-81.	3.8	18
144	Serotonin Transporters, Serotonin Release, and the Mechanism of Fenfluramine Neurotoxicity. Annals of the New York Academy of Sciences, 2000, 914, 172-186.	3.8	18

#	Article	IF	CITATIONS
145	Inhibition of MAO-A fails to alter cocaine-induced increases in extracellular dopamine and norepinephrine in rat nucleus accumbens. Molecular Brain Research, 2001, 87, 184-189.	2.3	18
146	Methamphetamine and Idiopathic Pulmonary Arterial Hypertension. Chest, 2007, 132, 1412-1413.	0.8	17
147	CB1 – Cannabinoid Receptor Antagonist Effects on Cortisol in Cannabis-Dependent Men. American Journal of Drug and Alcohol Abuse, 2012, 38, 114-119.	2.1	17
148	Psychoactive â€~Bath Salts': Compounds, Mechanisms, and Toxicities. Neuropsychopharmacology, 2013, 38, 243-244.	5.4	17
149	Atypical dopamine efflux caused by 3,4-methylenedioxypyrovalerone (MDPV) via the human dopamine transporter. Journal of Chemical Neuroanatomy, 2017, 83-84, 69-74.	2.1	17
150	Pharmacodynamic Effects, Pharmacokinetics, and Metabolism of the Synthetic Cannabinoid AM-2201 in Male Rats. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 543-550.	2.5	17
151	Evidence for nonlinear accumulation of the ultrapotent fentanyl analog, carfentanil, after systemic administration to male rats. Neuropharmacology, 2019, 158, 107596.	4.1	17
152	Preclinical Evaluation of GBR12909 Decanoate as a Longâ€Acting Medication for Methamphetamine Dependence. Annals of the New York Academy of Sciences, 2002, 965, 92-108.	3.8	16
153	Abuse-related effects of dual dopamine/serotonin releasers with varying potency to release norepinephrine in male rats and rhesus monkeys Experimental and Clinical Psychopharmacology, 2014, 22, 274-284.	1.8	16
154	Synthesis, characterization, and monoamine transporter activity of the new psychoactive substance 3′,4′â€methylenedioxyâ€4â€methylaminorex (MDMAR). Drug Testing and Analysis, 2015, 7, 555-564.	2.6	16
155	Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction. Neuropsychopharmacology, 2016, 41, 549-559.	5.4	16
156	Phentermine pretreatment antagonizes the cocaine-induced rise in mesolimbic dopamine. NeuroReport, 1996, 8, 7-9.	1.2	15
157	Evidence for noncompetitive modulation of substrateâ€induced serotonin release. Synapse, 2010, 64, 862-869.	1.2	15
158	Modafinil and its metabolites enhance the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Psychopharmacology, 2015, 232, 2463-2479.	3.1	15
159	Pharmacodynamics and pharmacokinetics of the novel synthetic opioid, U-47700, in male rats. Neuropharmacology, 2020, 177, 108195.	4.1	15
160	Serotonergic responsiveness in human cocaine users. Drug and Alcohol Dependence, 2007, 86, 207-213.	3.2	14
161	Analytical characterization and pharmacological evaluation of the new psychoactive substance 4â€fluoromethylphenidate (4Fâ€MPH) and differentiation between the (±)â€ <i>threo</i> and (±)â€ <i>erythro</i> diastereomers. Drug Testing and Analysis, 2017, 9, 347-357.	2.6	14
162	Novel Synthetic Opioids and Overdose Deaths: Tip of the Iceberg?. Neuropsychopharmacology, 2018, 43, 216-217.	5.4	14

Michael H Baumann

#	Article	IF	CITATIONS
163	Eutylone and Its Structural Isomers Interact with Monoamine Transporters and Induce Locomotor Stimulation. ACS Chemical Neuroscience, 2021, 12, 1170-1177.	3.5	14
164	Fentanyl-related designer drugs W-18 and W-15 lack appreciable opioid activity in vitro and in vivo. JCI Insight, 2017, 2, .	5.0	14
165	Altered Gene Expression in Pulmonary Tissue of Tryptophan Hydroxylase-1 Knockout Mice: Implications for Pulmonary Arterial Hypertension. PLoS ONE, 2011, 6, e17735.	2.5	13
166	Cell-Based Radiotracer Binding and Uptake Inhibition Assays: A Comparison of In Vitro Methods to Assess the Potency of Drugs That Target Monoamine Transporters. Frontiers in Pharmacology, 2020, 11, 673.	3.5	13
167	Mu-Selective Opioid Peptides Stimulate Prolactin Release in Lactating Rats. Journal of Neuroendocrinology, 1990, 2, 271-276.	2.6	12
168	Development of Neurochemical Normalization ("Agonist Substitution") Therapeutics for Stimulant Abuse: Focus on the Dopamine Uptake Inhibitor, GBR12909. Current Medicinal Chemistry - Central Nervous System Agents, 2004, 4, 47-59.	0.5	12
169	Substituted Amphetamines That Produce Long-Term Serotonin Depletion in Rat Brain ("Neurotoxicityâ€) Do Not Decrease Serotonin Transporter Protein Expression. Annals of the New York Academy of Sciences, 2004, 1025, 151-161.	3.8	12
170	Age differences in (±) 3,4â€methylenedioxymethamphetamine (MDMA)â€induced conditioned taste aversions and monoaminergic levels. Developmental Psychobiology, 2014, 56, 635-646.	1.6	12
171	The dopamine, serotonin and norepinephrine releasing activities of a series of methcathinone analogs in male rat brain synaptosomes. Psychopharmacology, 2019, 236, 915-924.	3.1	12
172	The psychoactive aminoalkylbenzofuran derivatives, 5-APB and 6-APB, mimic the effects of 3,4-methylenedioxyamphetamine (MDA) on monoamine transmission in male rats. Psychopharmacology, 2020, 237, 3703-3714.	3.1	12
173	First identification, chemical analysis and pharmacological characterization of N-piperidinyl etonitazene (etonitazepipne), a recent addition to the 2-benzylbenzimidazole opioid subclass. Archives of Toxicology, 2022, 96, 1865-1880.	4.2	12
174	Comparative neurobiological effects of ibogaine and MK-801 in rats. Drug and Alcohol Dependence, 2000, 59, 143-151.	3.2	11
175	Systematic Structure–Activity Studies on Selected 2-, 3-, and 4-Monosubstituted Synthetic Methcathinone Analogs as Monoamine Transporter Releasing Agents. ACS Chemical Neuroscience, 2019, 10, 740-745.	3.5	11
176	Stereoselective neurochemical, behavioral, and cardiovascular effects of αâ€pyrrolidinovalerophenone enantiomers in male rats. Addiction Biology, 2020, 25, e12842.	2.6	11
177	Discovery of novel peptidic dopamine transporter ligands by screening a positional scanning combinatorial hexapeptide library. , 1999, 33, 239-246.		10
178	Endogenous corticotropin releasing factor regulates adrenergic and opioid receptors. Peptides, 2002, 23, 2177-2180.	2.4	10
179	Rats preexposed to MDMA display attenuated responses to its aversive effects in the absence of persistent monoamine depletions. Psychopharmacology, 2011, 216, 441-449.	3.1	10
180	Effects of <i>N</i> -Alkyl-4-Methylamphetamine Optical Isomers on Plasma Membrane Monoamine Transporters and Abuse-Related Behavior. ACS Chemical Neuroscience, 2018, 9, 1829-1839.	3.5	10

#	Article	IF	CITATIONS
181	Characterization of recent non-fentanyl synthetic opioids via three different in vitro µ-opioid receptor activation assays. Archives of Toxicology, 2022, 96, 877-897.	4.2	10
182	Synthesis, Structural Characterization, and Pharmacological Activity of Novel Quaternary Salts of 4-Substituted Tryptamines. ACS Omega, 2022, 7, 24888-24894.	3.5	10
183	Neurochemical and Neuroendocrine Effects of Ibogaine in Rats: Comparison to MK-801. Annals of the New York Academy of Sciences, 1998, 844, 252-264.	3.8	9
184	Quantification of methylone and metabolites in rat and human plasma by liquid chromatography-tandem mass spectrometry. Forensic Toxicology, 2015, 33, 202-212.	2.4	9
185	Structure-activity relationships for 5F-MDMB-PICA and its 5F-pentylindole analogs to induce cannabinoid-like effects in mice. Neuropsychopharmacology, 2022, 47, 924-932.	5.4	9
186	Automated Computer Software Assessment of 5-Hydroxytryptamine 2A Receptor-Mediated Head Twitch Responses from Video Recordings of Mice. ACS Pharmacology and Translational Science, 2022, 5, 321-330.	4.9	9
187	Effects of phentermine and cocaine on fenfluramine-induced depletion of serotonin in mouse brain. Drug and Alcohol Dependence, 1996, 41, 71-74.	3.2	8
188	Autoregulation of dopamine synthesis in subregions of the rat nucleus accumbens. European Journal of Pharmacology, 2001, 411, 107-113.	3.5	8
189	Differential modulation of cocaine's discriminative cue by repeated and variable stress exposure: Relation to monoamine transporter levels. Neuropharmacology, 2012, 63, 330-337.	4.1	8
190	Synthesis, analytical characterization, and monoamine transporter activity of the new psychoactive substance 4â€methylphenmetrazine (4â€MPM), with differentiation from its <i>ortho</i> ―and <i>meta</i> ― positional isomers. Drug Testing and Analysis, 2018, 10, 1404-1416.	2.6	8
191	Brain Concentrations of Methylone and Its Metabolites after Systemic Methylone Administration: Relationship to Pharmacodynamic Effects. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 398-406.	2.5	8
192	(2-Aminopropyl)benzo[β]thiophenes (APBTs) are novel monoamine transporter ligands that lack stimulant effects but display psychedelic-like activity in mice. Neuropsychopharmacology, 2022, 47, 914-923.	5.4	8
193	In Vivo Correlates of Central Serotonin Function after High-Dose Fenfluramine Administration. Annals of the New York Academy of Sciences, 1998, 844, 138-152.	3.8	7
194	Effects of cocaethylene on dopamine and serotonin synthesis in Long–Evans and Sprague–Dawley brains. Brain Research, 1998, 804, 316-319.	2.2	7
195	Pharmacokinetics and pharmacodynamics of the synthetic cannabinoid, 5F-MDMB-PICA, in male rats. Neuropharmacology, 2021, 199, 108800.	4.1	7
196	Combined phentermine/fenfluramine administration and central serotonin neurons. Synapse, 1998, 28, 339-342.	1.2	6
197	Ethylenedioxy homologs of N -methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA) and its corresponding cathinone analog methylenedioxymethcathinone: Interactions with transporters for serotonin, dopamine, and norepinephrine. Bioorganic and Medicinal Chemistry, 2015, 23, 5574-5579.	3.0	6
198	Enduring Loss of Serotonergic Control of Orbitofrontal Cortex Function Following Contingent and Noncontingent Cocaine Exposure. Cerebral Cortex, 2017, 27, 5463-5476.	2.9	6

#	Article	IF	CITATIONS
199	Quantification of [1-(5-fluoropentyl)-1H-indol-3-yl](naphthalene-1-yl)methanone (AM-2201) and 13 metabolites in human and rat plasma by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2016, 1451, 97-106.	3.7	6
200	The Supplement Adulterant <i>β</i> -Methylphenethylamine Increases Blood Pressure by Acting at Peripheral Norepinephrine Transporters. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 328-336.	2.5	6
201	Pharmacokinetics and pharmacodynamics of cyclopropylfentanyl in male rats. Psychopharmacology, 2021, 238, 3629-3641.	3.1	6
202	Comparative Neuropharmacology and Pharmacokinetics of Methamphetamine and Its Thiophene Analog Methiopropamine in Rodents. International Journal of Molecular Sciences, 2021, 22, 12002.	4.1	6
203	Confronting the opioid crisis with basic research in neuropharmacology. Neuropharmacology, 2020, 166, 107972.	4.1	5
204	Targeted screening for biogenic amine transporters: Potential applications for natural products. Life Sciences, 2005, 78, 512-518.	4.3	4
205	The biogenic amine transporter activity of vinylogous amphetamine analogs. MedChemComm, 2016, 7, 1657-1663.	3.4	4
206	Amphetamine-like Neurochemical and Cardiovascular Effects of <i>α</i> -Ethylphenethylamine Analogs Found in Dietary Supplements. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 118-126.	2.5	4
207	The Changing Face of Recreational Drug Use. Cerebrum: the Dana Forum on Brain Science, 2016, 2016, .	0.1	4
208	2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α2-adrenergic receptors. Psychopharmacology, 2019, 236, 989-999.	3.1	3
209	Dual Dopamine/Serotonin Releasers as Potential Medications for Stimulant and Alcohol Addictions. , 2008, , 311.		3
210	Syntheses and analytical characterizations of novel (2â€aminopropyl)benzo[b]thiophene (APBT) based stimulants. Drug Testing and Analysis, 2020, 12, 1109-1125.	2.6	2
211	Interrogating the Activity of Ligands at Monoamine Transporters in Rat Brain Synaptosomes. Neuromethods, 2016, , 41-52.	0.3	2
212	Neurochemical mechanisms of phentermine and fenfluramine: Therapeutic and adverse effects. Drug Development Research, 2000, 51, 52-65.	2.9	1
213	Analysis for Alpha-Pyrrolidinovalerophenone and Its 2-Oxo-PVP Metabolite in Plasma by Liquid Chromatography–Tandem Mass Spectrometry. Journal of Analytical Toxicology, 2021, 45, 21-27.	2.8	0
214	Neurobiology of 3,4-Methylenedioxymethamphetamine (MDMA, or ""Ecstasy""). , 2007, , 119-142.		0
215	Effects of 3,4â€methylenedioxymethamphetamine (MDMA) and its metabolites on cardiovascular function in rats. FASEB Journal, 2012, 26, 1040.7.	0.5	0