
Tonicarlo R Velasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1320243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: A critical review and the UCLA experience. Epilepsia, 2009, 50, 1310-1335.	5.1	345
2	Do psychiatric comorbidities predict postoperative seizure outcome in temporal lobe epilepsy surgery?. Epilepsy and Behavior, 2009, 14, 529-534.	1.7	78
3	Seizure outcome after surgery for epilepsy due to focal cortical dysplastic lesions. Seizure: the Journal of the British Epilepsy Association, 2006, 15, 420-427.	2.0	74
4	Clinical Features of Patients with Posterior Cortex Epilepsies and Predictors of Surgical Outcome. Epilepsia, 2005, 46, 1442-1449.	5.1	69
5	Volumetric Evidence of Bilateral Damage in Unilateral Mesial Temporal Lobe Epilepsy. Epilepsia, 2006, 47, 1354-1359.	5.1	66
6	Cellular prion protein: implications in seizures and epilepsy. Cellular and Molecular Neurobiology, 2002, 22, 249-257.	3.3	45
7	Neurocysticercosis, mesial temporal lobe epilepsy, and hippocampal sclerosis: an association largely ignored. Lancet Neurology, The, 2006, 5, 20-21.	10.2	45
8	Surgically amenable epilepsies in children and adolescents: clinical, imaging, electrophysiological, and post-surgical outcome data. Child's Nervous System, 2005, 21, 546-551.	1.1	44
9	Language and Motor fMRI Activation in Polymicrogyric Cortex. Epilepsia, 2006, 47, 589-592.	5.1	39
10	Mesial temporal lobe epilepsy: Clinical and neuropathologic findings of familial and sporadic forms. Epilepsia, 2008, 49, 1046-1054.	5.1	37
11	Atypical neuropsychological profiles and cognitive outcome in mesial temporal lobe epilepsy. Epilepsy and Behavior, 2013, 27, 461-469.	1.7	36
12	Flow Reversal Versus Filter Protection. Circulation: Cardiovascular Interventions, 2013, 6, 552-559.	3.9	36
13	Typical and Atypical Perfusion Patterns in Periictal SPECT of Patients with Unilateral Temporal Lobe Epilepsy. Epilepsia, 2001, 42, 660-666.	5.1	35
14	Temporal lobe epilepsy patients with severe hippocampal neuron loss but normal hippocampal volume: Extracellular matrix molecules are important for the maintenance of hippocampal volume. Epilepsia, 2015, 56, 1562-1570.	5.1	35
15	Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. NeuroImage, 2016, 138, 13-27.	4.2	35
16	Psychiatric comorbidity in refractory focal epilepsy: A study of 490 patients. Epilepsy and Behavior, 2012, 25, 593-597.	1.7	34
17	Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy. Epilepsia, 2017, 58, 149-159.	5.1	34
18	Surgical Treatment for Mesial Temporal Lobe Epilepsy in the Presence of Massive Calcified Neurocysticercosis. Archives of Neurology, 2004, 61, 1117-9.	4.5	32

TONICARLO R VELASCO

#	Article	IF	CITATIONS
19	Foramen Ovale Electrodes Can Identify a Focal Seizure Onset When Surface EEG Fails in Mesial Temporal Lobe Epilepsy. Epilepsia, 2006, 47, 1300-1307.	5.1	31
20	Characteristics of mesial temporal lobe epilepsy associated with hippocampal sclerosis plus neurocysticercosis. Epilepsy Research, 2014, 108, 1889-1895.	1.6	31
21	Clinical and Neuroimaging Features of Good and Poor Seizure Control Patients with Mesial Temporal Lobe Epilepsy and Hippocampal Atrophy. Epilepsia, 2003, 44, 807-814.	5.1	29
22	Utility of Ictal Single Photon Emission Computed Tomography in Mesial Temporal Lobe Epilepsy With Hippocampal Atrophy: A Randomized Trial. Neurosurgery, 2011, 68, 431-436.	1.1	29
23	On the relationship between neurocysticercosis and mesial temporal lobe epilepsy associated with hippocampal sclerosis: coincidence or a pathogenic relationship?. Pathogens and Global Health, 2012, 106, 280-285.	2.3	29
24	Manual Hippocampal Subfield Segmentation Using High-Field MRI: Impact of Different Subfields in Hippocampal Volume Loss of Temporal Lobe Epilepsy Patients. Frontiers in Neurology, 2018, 9, 927.	2.4	28
25	Increased frequency of hippocampal sclerosis ILAE type 2 in patients with mesial temporal lobe epilepsy with normal episodic memory: Table 1. Brain, 2015, 138, e359-e359.	7.6	27
26	Increased Metallothionein I/II Expression in Patients with Temporal Lobe Epilepsy. PLoS ONE, 2012, 7, e44709.	2.5	26
27	Amygdala gene expression of NMDA and GABA _A receptors in patients with mesial temporal lobe epilepsy. Hippocampus, 2012, 22, 92-97.	1.9	26
28	Cognitive and Surgical Outcome in Mesial Temporal Lobe Epilepsy Associated with Hippocampal Sclerosis Plus Neurocysticercosis: A Cohort Study. PLoS ONE, 2013, 8, e60949.	2.5	25
29	Neuroimaging observations linking neurocysticercosis and mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Research, 2015, 116, 34-39.	1.6	25
30	Pontine activation during focal status epilepticus secondary to hamartoma of the floor of the foor fue fourth ventricle. Epilepsy Research, 2006, 68, 265-267.	1.6	24
31	Expression of MicroRNAs miR-145, miR-181c, miR-199a and miR-1183 in the Blood and Hippocampus of Patients with Mesial Temporal Lobe Epilepsy. Journal of Molecular Neuroscience, 2019, 69, 580-587.	2.3	24
32	Hemispheric dysplasia and hemimegalencephaly: imaging definitions. Child's Nervous System, 2014, 30, 1813-1821.	1.1	23
33	Everyday memory impairment in patients with temporal lobe epilepsy caused by hippocampal sclerosis. Epilepsy and Behavior, 2017, 69, 31-36.	1.7	23
34	Understanding the association of neurocysticercosis and mesial temporal lobe epilepsy and its impact on the surgical treatment of patients with drug-resistant epilepsy. Epilepsy and Behavior, 2017, 76, 168-177.	1.7	23
35	Ictal technetium-99Âm ethyl cysteinate dimer single-photon emission tomographic findings in epileptic patients with polymicrogyria syndromes: A Subtraction of ictal–interictal SPECT coregistered to MRI study. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1159-1170.	6.4	22
36	Interictal SPECT in patients with mesial temporal lobe epilepsy and psychosis: a case-control study. Psychiatry Research - Neuroimaging, 2005, 138, 75-84.	1.8	21

TONICARLO R VELASCO

#	Article	IF	CITATIONS
37	Using network dynamic fMRI for detection of epileptogenic foci. BMC Neurology, 2015, 15, 262.	1.8	21
38	How frequent is the association of neurocysticercosis and mesial temporal lobe epilepsy with hippocampal sclerosis?. Epilepsia, 2010, 51, 2359-2360.	5.1	20
39	Independent predictors and a prognostic model for surgical outcome in refractory frontal lobe epilepsy. Epilepsy Research, 2012, 99, 55-63.	1.6	20
40	Expression of circulating microRNAs as predictors of diagnosis and surgical outcome in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Research, 2020, 166, 106373.	1.6	20
41	The neurobiological substrates of behavioral manifestations during temporal lobe seizures: A neuroethological and ictal SPECT correlation study. Epilepsy and Behavior, 2010, 17, 344-353.	1.7	18
42	Adhesio interthalamica and cavum septum pellucidum in mesial temporal lobe epilepsy. Brain Imaging and Behavior, 2016, 10, 849-856.	2.1	17
43	ls dystonic posturing during temporal lobe epileptic seizures the expression of an endogenous anticonvulsant system?. Epilepsy and Behavior, 2008, 12, 39-48.	1.7	16
44	Addressing overtreatment in patients with refractory epilepsy at a tertiary referral centre in Brazil. Epileptic Disorders, 2011, 13, 56-60.	1.3	15
45	Modulation of NMDA receptor by miR-219 in the amygdala and hippocampus of patients with mesial temporal lobe epilepsy. Journal of Clinical Neuroscience, 2020, 74, 180-186.	1.5	15
46	Looking for complexity in quantitative semiology of frontal and temporal lobe seizures using neuroethology and graph theory. Epilepsy and Behavior, 2014, 38, 81-93.	1.7	14
47	Cognitive performance of patients with mesial temporal lobe epilepsy is not associated with human prion protein gene variant allele at codons 129 and 171. Epilepsy and Behavior, 2006, 8, 635-642.	1.7	13
48	On the prognostic value of ictal EEG patterns in temporal lobe epilepsy surgery: A cohort study. Seizure: the Journal of the British Epilepsy Association, 2013, 22, 287-291.	2.0	13
49	The approach to patients with psychogenic nonepileptic seizures in epilepsy surgery centers regarding diagnosis, treatment, and education. Epilepsy and Behavior, 2017, 68, 78-83.	1.7	11
50	A Comparison of Independent Component Analysis (ICA) of fMRI and Electrical Source Imaging (ESI) in Focal Epilepsy Reveals Misclassification Using a Classifier. Brain Topography, 2015, 28, 813-831.	1.8	9
51	Ictal chronology and interictal spikes predict perfusion patterns in temporal lobe epilepsy: a multivariate study. Seizure: the Journal of the British Epilepsy Association, 2004, 13, 346-357.	2.0	8
52	Decision-making in patients with temporal lobe epilepsy: Delay gratification ability is not impaired in patients with hippocampal sclerosis. Epilepsy and Behavior, 2016, 60, 158-164.	1.7	8
53	Two-Dimensional Temporal Clustering Analysis for Patients with Epilepsy: Detecting Epilepsy-Related Information in EEG-fMRI Concordant, Discordant and Spike-Less Patients. Brain Topography, 2018, 31, 322-336.	1.8	8
54	Opercular myoclonic-anarthric status epilepticus due to glutamic acid decarboxylase antibody-associated encephalitis. Epileptic Disorders, 2013, 15, 342-346.	1.3	7

TONICARLO R VELASCO

#	Article	IF	CITATIONS
55	Imaging epilepsy with SISCOM. Nature Reviews Neurology, 2011, 7, 240-240.	10.1	6
56	Systematic review of the efficacy in seizure control and safety of neuronavigation in epilepsy surgery: The need for well-designed prospective studies. Seizure: the Journal of the British Epilepsy Association, 2015, 31, 99-107.	2.0	6
57	Sex as a Prognostic Factor for Surgical Outcome in Mesial Temporal Lobe Epilepsy. Archives of Neurology, 2007, 64, 288.	4.5	5
58	Drebrin expression patterns in patients with refractory temporal lobe epilepsy and hippocampal sclerosis. Epilepsia, 2020, 61, 1581-1594.	5.1	5
59	Variable fMRI activation during two different language tasks in a patient with cognitive delay. Arquivos De Neuro-Psiquiatria, 2007, 65, 985-987.	0.8	4
60	The social context and the need of information from patients with epilepsy: evaluating a tertiary referral service. Arquivos De Neuro-Psiquiatria, 2015, 73, 298-303.	0.8	4
61	Histological correlates of hippocampal magnetization transfer images in drug-resistant temporal lobe epilepsy patients. NeuroImage: Clinical, 2020, 28, 102463.	2.7	4
62	Rasmussen encephalitis tissue transfer program. Epilepsia, 2016, 57, 1005-1007.	5.1	3
63	Improving surgical outcome with electric source imaging and high field magnetic resonance imaging. Seizure: the Journal of the British Epilepsy Association, 2021, 90, 145-154.	2.0	3
64	Validation of the Subjective Handicap of Epilepsy (SHE) in Brazilian patients with epilepsy. Epilepsy and Behavior, 2012, 24, 345-351.	1.7	2
65	Multidimensional Approach Assessing the Role of Interleukin 1 Beta in Mesial Temporal Lobe Epilepsy. Frontiers in Neurology, 2021, 12, 690847.	2.4	2
66	Sphenoid Sinus Bleeding During Generalized Seizure. Clinical Nuclear Medicine, 2007, 32, 45-46.	1.3	1
67	Prnp gene and cerebellum volume in patients with refractory mesial temporal lobe epilepsy. Neurological Sciences, 2014, 35, 239-244.	1.9	1
68	Corrigendum to "Cognitive performance of patients with mesial temporal lobe epilepsy is not associated with human prion protein gene variant allele at codons 129 and 171―[Epilepsy Behav 2006;8:635–42]. Epilepsy and Behavior, 2008, 12, 210-213.	1.7	0
69	Letter by de Castro-Afonso et al Regarding Article, "Operator's Experience Is the Most Efficient Embolic Protection Device for Carotid Artery Stentingâ€: Circulation: Cardiovascular Interventions, 2014, 7, 130-130.	3.9	0
70	Multimodal quantitative magnetic resonance imaging analysis with individualized postprocessing in patients with drug-resistant focal epilepsy and conventional visual inspection negative for epileptogenic lesions. Clinics, 2019, 74, e908.	1.5	0
71	The intellectual profile of pediatric patients with posterior cortex epilepsy. Epilepsy and Behavior, 2021, 125, 108447.	1.7	0