Olexandr V Golovchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1320117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of 5-amino-2-aminoalkyl-1,3-oxazol-4-ylphosphonic acid derivatives and their use in the preparation of phosphorylated peptidomimetics. Tetrahedron, 2013, 69, 6251-6261.	1.9	17
2	A challenging synthesis of new 1,3,4-thiadiazole derivatives starting from 2-acylamino-3,3-dichloroacrylonitriles. Heteroatom Chemistry, 2004, 15, 454-458.	0.7	16
3	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 1714-1723.	0.8	13
4	A Novel Synthetic Approach to Phosphorylated Peptidomimetics. Heteroatom Chemistry, 2013, 24, 289-297.	0.7	13
5	Transformations of Acylation Products of Functionally 4-Substituted 2-Alkyl(aryl)-5-hydrazino-1,3-oxazoles into 1,3,4-Oxadiazole Derivatives. Russian Journal of General Chemistry, 2005, 75, 425-431.	0.8	12
6	Introduction of chiral 2-(aminoalkyl) substituents into 5-amino-1,3-oxazol-4-ylphosphonic acid derivatives and their use in phosphonodipeptide synthesis. RSC Advances, 2015, 5, 11198-11206.	3.6	11
7	Reaction of diethyl 1-acylamino-2,2-dichloroethenylphosphonates with amino acids esters. Russian Journal of General Chemistry, 2012, 82, 643-651.	0.8	9
8	Synthesis and in vitro anticytomegalovirus activity of 5-hydroxyalkylamino-1,3-oxazoles derivatives. Medicinal Chemistry Research, 2020, 29, 1669-1675.	2.4	7
9	A convenient procedure for introducing arylsulfanyl and heterylsulfanyl groups into the 5 position of the oxazole ring. Russian Journal of General Chemistry, 2004, 74, 1414-1417.	0.8	5
10	N-methyl-D-glucamine-derived 4-substituted 1,3-oxazoles. Russian Journal of General Chemistry, 2015, 85, 851-857.	0.8	5
11	Synthesis and properties of 4-phosphorylated derivatives of 5-hydroxyalkylamino-1,3-oxazoles. Russian Journal of General Chemistry, 2016, 86, 1584-1596.	0.8	5
12	1,3-oxazole derived cytisines. Russian Journal of General Chemistry, 2017, 87, 244-251.	0.8	5
13	In silico and in vitro studies of a number PILs as new antibacterials against MDR clinical isolate Acinetobacter baumannii. Chemical Biology and Drug Design, 2020, 95, 624-630.	3.2	5
14	Reaction of 2-aryl(methyl)-4-cyano-5-hydrazino-1,3-oxazoles with aryl Isothiocyanates. Russian Journal of General Chemistry, 2007, 77, 932-935.	0.8	4
15	Synthesis of C-heteryl-substituted aminomethylphosphonic acids derivatives. Russian Journal of General Chemistry, 2010, 80, 723-727.	0.8	4
16	Synthesis of new 4-phosphorylated derivatives of 5-amino-1,3-oxazole. Russian Journal of General Chemistry, 2011, 81, 1470-1476.	0.8	4
17	Synthesis and some properties of 4-phosphorylated derivatives of 5-mercapto-1,3-oxazoles. Russian Journal of General Chemistry, 2013, 83, 46-53.	0.8	4
18	Synthesis of phosphorylated dehydrotyrosine-containing tripeptides from 5-amino-2-aminoalkyl-1,3-oxazole-4-phosphonic acids derivatives. Russian Journal of General Chemistry, 2015, 85, 71-74.	0.8	3

#	Article	IF	CITATIONS
19	Synthesis of novel phosphorylated peptidomimetics which contain ω-haloalkyl and ω-thiocyanoethyl residues. Current Chemistry Letters, 2020, , 131-142.	1.6	3
20	A Convenient Route to Phosphonium Derivatives of Coumarin and Its Imino Analog. Russian Journal of General Chemistry, 2002, 72, 1828-1828.	0.8	2
21	Recyclization of Products Formed by Addition of 5-Hydrazino-2-phenyl-1,3-oxazoles Functionally Substituted in 4-Position to Aryl Isothiocyanates. Russian Journal of General Chemistry, 2003, 73, 1832-1833.	0.8	2
22	A Facile Synthesis of Derivatives of (1,3,4-Thiadiazol-2-yl)glycine and Its Phosphonyl Analogue. Synthesis, 2003, 2003, 2851-2857.	2.3	2
23	Synthesis of novel phosphono peptidomimetics. Russian Journal of General Chemistry, 2016, 86, 1206-1208.	0.8	2
24	Đ¡Đ,Đ½Ñ,ез Đ½Đ¾Đ2Đ¾Ñ— Đ³ĐµÑ,ĐµÑ€Đ¾Ñ†Đ,Đ°Đ»Ñ–Ñ‡Đ½Đ¾Ñ— ÑĐ,ÑÑ,ĐµĐ¼Đ, [1,3]Đ¾Đ°ÑаĐ	∙Đð∕₄Đ»Đ¾	4[4 ,5-Ñ][1,5,

25	Reaction of diethyl 5-hydrazino-2-(4-methylphenyl)-1,3-oxazol-4-ylphosphonate with acyl isothiocyanates. Russian Journal of General Chemistry, 2012, 82, 1781-1786.	0.8	1
26	A convenient approach to synthesis of benzoxazol-2-ylglycine and benzothiazol-2-ylglycicne derivatives. Russian Journal of General Chemistry, 2013, 83, 1180-1182.	0.8	1
27	Crystal structure of diethyl {2,2,2-trichloro-1-[2-(1,3-dioxo-2,3-dihydro-1 <i>H</i> -isoindol-2-yl)-4-methylpentanamido]ethyl}phosphonate. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 915-917.	0.5	1
28	Interaction of 1-acylamino-2,2-dichloroethenyl(triphenyl)phosphonium chlorides with alkanolamines. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 848-857.	1.6	1