
Antonia M Rojano-Delgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1319834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pool of Resistance Mechanisms to Glyphosate in Digitaria insularis. Journal of Agricultural and Food Chemistry, 2012, 60, 615-622.	5.2	126

2 Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L.) Tj ETQq0 0 0 rgBJ /Overlock 10 Tf 5

3	Determination of glyphosate and its metabolites in plant material by reversedâ€polarity CE with indirect absorptiometric detection. Electrophoresis, 2010, 31, 1423-1430.	2.4	64	
---	---	-----	----	--

Target and Non-target Site Mechanisms Developed by Glyphosate-Resistant Hairy beggarticks (Bidens) Tj ETQq0 0 $\frac{0.9}{3.0}$ rgBT /Overlock 10 T

5	Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants. Phytochemistry, 2012, 73, 34-41.	2.9	54
6	Multiple Mechanisms Increase Levels of Resistance in Rapistrum rugosum to ALS Herbicides. Frontiers in Plant Science, 2016, 7, 169.	3.6	42
7	Enhanced 2,4-D Metabolism in Two Resistant Papaver rhoeas Populations from Spain. Frontiers in Plant Science, 2017, 8, 1584.	3.6	41
8	Glyphosate tolerance by Clitoria ternatea and Neonotonia wightii plants involves differential absorption and translocation of the herbicide. Plant and Soil, 2011, 347, 221-230.	3.7	40
9	The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus. International Journal of Molecular Sciences, 2019, 20, 2396.	4.1	36
10	Reduced Absorption and Impaired Translocation Endows Glyphosate Resistance in <i>Amaranthus palmeri</i> Harvested in Glyphosate-Resistant Soybean from Argentina. Journal of Agricultural and Food Chemistry, 2019, 67, 1052-1060.	5.2	36
11	Capillary electrophoresis and herbicide analysis: Present and future perspectives. Electrophoresis, 2014, 35, 2509-2519.	2.4	27
12	First Resistance Mechanisms Characterization in Glyphosate-Resistant Leptochloa virgata. Frontiers in Plant Science, 2016, 7, 1742.	3.6	24
13	Mechanism of imazamox resistance of the Clearfield® wheat cultivar for better weed control. Agronomy for Sustainable Development, 2015, 35, 639-648.	5.3	22
14	Target site as the main mechanism of resistance to imazamox in a Euphorbia heterophylla biotype. Scientific Reports, 2019, 9, 15423.	3.3	21
15	Cytochrome P450 metabolism-based herbicide resistance to imazamox and 2,4-D in Papaver rhoeas. Plant Physiology and Biochemistry, 2021, 160, 51-61.	5.8	20
16	Screening and confirmatory analysis of glyoxylate: A biomarker of plants resistance against herbicides. Talanta, 2010, 82, 1757-1762.	5.5	18
17	The First Case of Glyphosate Resistance in Johnsongrass (Sorghum halepense (L.) Pers.) in Europe. Plants, 2020, 9, 313.	3.5	18
18	Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis. Frontiers in Plant Science, 2016, 7, 1220.	3.6	16

#	Article	IF	CITATIONS
19	Multiple Resistance Evolution in Bipyridylium-Resistant Epilobium ciliatum After Recurrent Selection. Frontiers in Plant Science, 2018, 9, 695.	3.6	16
20	Multiple mutations in the EPSPS and ALS genes of Amaranthus hybridus underlie resistance to glyphosate and ALS inhibitors. Scientific Reports, 2020, 10, 17681.	3.3	15
21	Physiological, biochemical and molecular bases of resistance to tribenuron-methyl and glyphosate in Conyza canadensis from olive groves in southern Spain. Plant Physiology and Biochemistry, 2019, 144, 14-21.	5.8	13
22	Cross-resistance mechanisms to ACCase-inhibiting herbicides in short-spike canarygrass (Phalaris) Tj ETQqO 0 0	rgBT /Ove	rlock 10 Tf 50
23	Point Mutations as Main Resistance Mechanism Together With P450-Based Metabolism Confer Broad Resistance to Different ALS-Inhibiting Herbicides in Glebionis coronaria From Tunisia. Frontiers in Plant Science, 2021, 12, 626702.	3.6	13
24	Low temperatures enhance the absorption and translocation of 14C-glyphosate in glyphosate-resistant Conyza sumatrensis. Journal of Plant Physiology, 2019, 240, 153009.	3.5	12
25	Resistance Mechanisms to 2,4-D in Six Different Dicotyledonous Weeds Around the World. Agronomy, 2020, 10, 566.	3.0	12
26	Ultrasoundâ€assisted Extraction with LC–TOF/MS Identification and LC–UV Determination of Imazamox and its Metabolites in Leaves of Wheat Plants. Phytochemical Analysis, 2014, 25, 357-363.	2.4	11
27	Multiple mechanisms are involved in new imazamox-resistant varieties of durum and soft wheat. Scientific Reports, 2017, 7, 14839.	3.3	11
28	First Case of Conyza canadensis from Hungary with Multiple Resistance to Glyphosate and Flazasulfuron. Agronomy, 2018, 8, 157.	3.0	11
29	Characterization of three glyphosate resistant Parthenium hysterophorus populations collected in citrus groves from Mexico. Pesticide Biochemistry and Physiology, 2019, 155, 1-7.	3.6	11
30	Physiological, biochemical and molecular characterization of an induced mutation conferring imidazolinone resistance in wheat. Physiologia Plantarum, 2016, 158, 2-10.	5.2	10
31	Accumulation of Target Gene Mutations Confers Multiple Resistance to ALS, ACCase, and EPSPS Inhibitors in Lolium Species in Chile. Frontiers in Plant Science, 2020, 11, 553948.	3.6	10
32	New Case of False-Star-Grass (Chloris distichophylla) Population Evolving Glyphosate Resistance. Agronomy, 2020, 10, 377.	3.0	10
33	Qualitative/quantitative strategy for the determination of glufosinate and metabolites in plants. Analytical and Bioanalytical Chemistry, 2014, 406, 611-620.	3.7	9
34	Stacked traits conferring multiple resistance to imazamox and glufosinate in soft wheat. Pest Management Science, 2019, 75, 648-657.	3.4	9
35	First Case of Glyphosate Resistance in Bromus catharticus Vahl.: Examination of Endowing Resistance Mechanisms. Frontiers in Plant Science, 2021, 12, 617945.	3.6	9
36	First Case of Multiple Resistance to Glyphosate and PPO-inhibiting Herbicides in Rigid Ryegrass (<i>Lolium rigidum</i>) in Spain. Weed Science, 2017, 65, 690-698.	1.5	8

#	Article	IF	CITATIONS
37	Multiple Resistance to Synthetic Auxin Herbicides and Glyphosate in Parthenium hysterophorus Occurring in Citrus Orchards. Journal of Agricultural and Food Chemistry, 2019, 67, 10010-10017.	5.2	8
38	Multiple Herbicide Resistance Evolution: The Case of <i>Eleusine indica</i> in Brazil. Journal of Agricultural and Food Chemistry, 2021, 69, 1197-1205.	5.2	8
39	Distribution of Glyphosate-Resistance in Echinochloa crus-galli Across Agriculture Areas in the Iberian Peninsula. Frontiers in Plant Science, 2021, 12, 617040.	3.6	8
40	Liquid chromatography–diode array detection to study the metabolism of glufosinate in Triticum aestivum T-590 and influence of the genetic modification on its resistance. Phytochemistry, 2013, 96, 117-122.	2.9	7
41	Resistance to imazamox in Clearfield soft wheat (Triticum aestivum L.). Crop Protection, 2015, 78, 15-19.	2.1	6
42	The First Case of Short-Spiked Canarygrass (Phalaris brachystachys) with Cross-Resistance to ACCase-Inhibiting Herbicides in Iran. Agronomy, 2019, 9, 377.	3.0	5
43	Influence of temperature on the retention, absorption and translocation of fomesafen and imazamox in Euphorbia heterophylla. Pesticide Biochemistry and Physiology, 2021, 173, 104794.	3.6	5
44	Evolving Multiple Resistance to EPSPS, GS, ALS, PSI, PPO, and Synthetic Auxin Herbicides in Dominican Republic Parthenium hysterophorus Populations. A Physiological and Biochemical Study. Agronomy, 2020, 10, 554.	3.0	4
45	Confirmation of Multiple Resistant Chloris radiata Population, Harvested in Colombian Rice Fields. Agronomy, 2021, 11, 496.	3.0	4
46	Absorption and Penetration of Herbicides Viewed in Metabolism Studies: Case of Glufosinate and Imazamox in Wheat. ACS Symposium Series, 2014, , 159-165.	0.5	3
47	Resistance to Fomesafen, Imazamox and Glyphosate in Euphorbia heterophylla from Brazil. Agronomy, 2020, 10, 1573.	3.0	3
48	Absorption, translocation, and metabolism studies of herbicides in weeds and crops. , 2020, , 127-154.		1