Vaibhav V Goud

List of Publications by Citations

Source: https://exaly.com/author-pdf/1319637/vaibhav-v-goud-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

119
papers5,451
citations33
h-index72
g-index123
ext. papers6,393
ext. citations5.1
avg, IF6.29
L-index

#	Paper	IF	Citations
119	Production of first and second generation biofuels: A comprehensive review. <i>Renewable and Sustainable Energy Reviews</i> , 2010 , 14, 578-597	16.2	2008
118	Characterization of Canadian biomass for alternative renewable biofuel. <i>Renewable Energy</i> , 2010 , 35, 1624-1631	8.1	285
117	Biodiesel production from renewable feedstocks: Status and opportunities. <i>Renewable and Sustainable Energy Reviews</i> , 2012 , 16, 4763-4784	16.2	216
116	Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. <i>Bioresource Technology</i> , 2008 , 99, 3737-44	11	212
115	Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. <i>Bioresource Technology</i> , 2006 , 97, 1365-71	11	144
114	Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. <i>Chemical Engineering Science</i> , 2007 , 62, 4065-4076	4.4	116
113	Epoxidation of Canola Oil with Hydrogen Peroxide Catalyzed by Acidic Ion Exchange Resin. <i>JAOCS</i> , <i>Journal of the American Oil Chemistsn</i> \$ociety, 2008 , 85, 887-896	1.8	115
112	Epoxidation of karanja (Pongamia glabra) oil by H2O2. <i>JAOCS, Journal of the American Oil Chemistsm Society</i> , 2006 , 83, 635-640	1.8	104
111	Hydrolysis of bamboo biomass by subcritical water treatment. <i>Bioresource Technology</i> , 2015 , 191, 244-5	5 2 ₁ 1	75
110	Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: A comparative study. <i>Biomass and Bioenergy</i> , 2015 , 81, 9-18	5.3	75
109	Characterization of biomasses available in the region of North-East India for production of biofuels. <i>Biomass and Bioenergy</i> , 2012 , 45, 212-220	5.3	69
108	Ultrasound Assisted Lime Pretreatment of Lignocellulosic Biomass toward Bioethanol Production. <i>Energy & Description</i> , 26, 3777-3784	4.1	69
107	Epoxidation of Castor Oil Fatty Acid Methyl Esters (COFAME) as a Lubricant base Stock Using Heterogeneous Ion-exchange Resin (IR-120) as a Catalyst. <i>Energy Procedia</i> , 2014 , 54, 75-84	2.3	68
106	Epoxidation of karanja (Pongamia glabra) oil catalysed by acidic ion exchange resin. <i>European Journal of Lipid Science and Technology</i> , 2007 , 109, 575-584	3	66
105	Extraction of oil from rubber seeds for biodiesel application: Optimization of parameters. <i>Fuel</i> , 2015 , 150, 636-644	7.1	62
104	Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. <i>Bioresource Technology</i> , 2019 , 286, 121368	11	61
103	Improved thermo-oxidative stability of structurally modified waste cooking oil methyl esters for bio-lubricant application. <i>Journal of Cleaner Production</i> , 2016 , 112, 4515-4524	10.3	60

102	Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). <i>Bioresource Technology</i> , 2017 , 242, 244-252	11	57
101	Extraction of phenolic compounds and anthocyanin from black and purple rice bran (Oryza sativa L.) using ultrasound: A comparative analysis and phytochemical profiling. <i>Industrial Crops and Products</i> , 2017 , 95, 332-341	5.9	57
100	Supercritical CO2 Fractionation of Bio-oil Produced from Mixed Biomass of Wheat and Wood Sawdust. <i>Energy & Energy & Ene</i>	4.1	56
99	Optimization of methane production during anaerobic co-digestion of rice straw and hydrilla verticillata using response surface methodology. <i>Fuel</i> , 2019 , 235, 92-99	7.1	55
98	Thermal, oxidative and low temperature properties of methyl esters prepared from oils of different fatty acids composition: A comparative study. <i>Thermochimica Acta</i> , 2014 , 577, 33-40	2.9	55
97	Supercritical CO2 fractionation of bio-oil produced from wheat-hemlock biomass. <i>Bioresource Technology</i> , 2010 , 101, 7605-13	11	54
96	Operational Strategies and Comprehensive Evaluation of Menthol Based Deep Eutectic Solvent for the Extraction of Lower Alcohols from Aqueous Media. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16920-16932	8.3	49
95	Physico-chemical characteristics of Jatropha curcas L. of North East India for exploration of biodiesel. <i>Biomass and Bioenergy</i> , 2012 , 46, 546-554	5.3	4 ^O
94	Enhanced methane potential of rice straw with microwave assisted pretreatment and its kinetic analysis. <i>Journal of Environmental Management</i> , 2019 , 232, 188-196	7.9	40
93	Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition. <i>Energy Conversion and Management</i> , 2018 , 156, 269-278	10.6	40
92	Solubility of glucose in tetrabutylammonium bromide based deep eutectic solvents: Experimental and molecular dynamic simulations. <i>Fluid Phase Equilibria</i> , 2017 , 448, 168-177	2.5	39
91	Solubility of glucose, xylose, fructose and galactose in ionic liquids: Experimental and theoretical studies using a continuum solvation model. <i>Fluid Phase Equilibria</i> , 2015 , 395, 33-43	2.5	38
90	Epoxidation of Jatropha (Jatropha curcas) oil by peroxyacids. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2010 , 5, 346-354	1.3	35
89	Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species. <i>Biofuels</i> , 2015 , 6, 37-44	2	34
88	Catalytic cracking of waste cooking oil for biofuel production using zirconium oxide catalyst. <i>Industrial Crops and Products</i> , 2018 , 118, 282-289	5.9	33
87	Ionic Liquid and Sulfuric Acid-Based Pretreatment of Bamboo: Biomass Delignification and Enzymatic Hydrolysis for the Production of Reducing Sugars. <i>Industrial & Description of Reducing Sugars</i> . <i>Industrial & Description of Research</i> , 2018 , 57, 10105-10117	3.9	33
86	Kinetics of in situ Epoxidation of Natural Unsaturated Triglycerides Catalyzed by Acidic Ion Exchange Resin. <i>Industrial & Exchange Resin. Industrial & Industria</i>	3.9	32
85	Supercritical CO2 extraction and online fractionation of dry ginger for production of high-quality volatile oil and gingerols enriched oleoresin. <i>Industrial Crops and Products</i> , 2019 , 130, 352-362	5.9	32

84	Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production. <i>3 Biotech</i> , 2017 , 7, 139	2.8	30
83	Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste. <i>Renewable Energy</i> , 2020 , 149, 1352-1359	8.1	30
82	Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass. <i>Journal of Energy</i> , 2016 , 2016, 1-12	1	30
81	Molecular Dynamic Simulations for the Extraction of Quinoline from Heptane in the Presence of a Low-Cost Phosphonium-Based Deep Eutectic Solvent. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 4006-	48145	29
80	Composition and anti-bacterial activity analysis of citronella oil obtained by hydrodistillation: Process optimization study. <i>Industrial Crops and Products</i> , 2016 , 94, 178-188	5.9	26
79	Optimization and hydrolysis of cellulose under subcritical water treatment for the production of total reducing sugars. <i>RSC Advances</i> , 2015 , 5, 103265-103275	3.7	25
78	Ultrasound assisted transesterification of high free fatty acids karanja oil using heterogeneous base catalysts. <i>Biomass Conversion and Biorefinery</i> , 2015 , 5, 195-207	2.3	25
77	Ectopic expression of , encoding diacylglycerol -acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha. <i>Biotechnology for Biofuels</i> , 2016 , 9, 226	7.8	23
76	Reactive extraction of castor seeds and storage stability characteristics of produced biodiesel. <i>Chemical Engineering Research and Design</i> , 2016 , 100, 252-263	5.5	23
75	Optimisation of the acid catalysed pretreatment of areca nut husk fibre using the Taguchi design method. <i>Biosystems Engineering</i> , 2011 , 110, 465-472	4.8	23
74	COSMO-RS Based Predictions for the Extraction of Lignin from Lignocellulosic Biomass Using Ionic Liquids: Effect of Cation and Anion Combination. <i>Journal of Solution Chemistry</i> , 2012 , 41, 1610-1630	1.8	22
73	Thermodynamic Insights in the Separation of Cellulose/Hemicellulose Components from Lignocellulosic Biomass Using Ionic Liquids. <i>Journal of Solution Chemistry</i> , 2015 , 44, 538-557	1.8	21
72	Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. <i>International Journal of Biological Macromolecules</i> , 2020 , 156, 180-185	7.9	21
71	Two-step process for production of methyl ester from rubber seed oil using barium hydroxide octahydrate catalyst: Process optimization. <i>Journal of Cleaner Production</i> , 2017 , 142, 3490-3499	10.3	21
70	In-situ alkaline transesterification of castor seeds: Optimization and engine performance, combustion and emission characteristics of blends. <i>Energy Conversion and Management</i> , 2017 , 142, 200	-2174 ⁶	19
69	Modification of epoxidised canola oil. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2011 , 6, 14-22	1.3	19
68	Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production. <i>Journal of Analytical and Applied Pyrolysis</i> , 2019 , 139, 333-343	6	17
67	Chemical composition analysis of various genetically modified sorghum traits: Pretreatment process optimization and bioethanol production from hemicellulosic hydrolyzates without detoxification. <i>Journal of Environmental Chemical Engineering</i> , 2018 , 6, 5625-5634	6.8	17

(2017-2016)

66	Solid Liquid Equilibrium of Cellobiose, Sucrose, and Maltose Monohydrate in Ionic Liquids: Experimental and Quantum Chemical Insights. <i>Journal of Chemical & Chemica</i>	2.8	17	
65	Determination of salutary parameters to facilitate bio-energy production from three uncommon biomasses using thermogravimetric analysis. <i>Journal of Thermal Analysis and Calorimetry</i> , 2013 , 111, 10	54 9 :165	5 ¹⁵	
64	Effect of storage parameters on stability of Jatropha-derived biodiesel. <i>International Journal of Energy and Environmental Engineering</i> , 2013 , 4, 13	4	15	
63	Utilization of green seed canola oil for in situ epoxidation. <i>European Journal of Lipid Science and Technology</i> , 2011 , 113, 768-774	3	14	
62	Synthesis of Waste Cooking Oil Epoxide as a Bio-Lubricant Base Stock: Characterization and Optimization Study. <i>Journal of Bioprocess Engineering and Biorefinery</i> , 2014 , 3, 57-72		14	
61	Effect of Protic and Aprotic Solvents on the Mechanism of Cellulose Dissolution in Ionic Liquids: A Combined Molecular Dynamics and Experimental Insight. <i>ChemistrySelect</i> , 2016 , 1, 4823-4832	1.8	14	
60	Hydroxylation and hexanoylation of epoxidized waste cooking oil and epoxidized waste cooking oil methyl esters: Process optimization and physico-chemical characterization. <i>Industrial Crops and Products</i> , 2019 , 133, 151-159	5.9	13	
59	Thermo-chemical conversion of waste rubber seed shell to produce fuel and value-added chemicals. <i>Journal of the Energy Institute</i> , 2018 , 91, 940-950	5.7	13	
58	Effect of cellulose nanocrystals derived from Dunaliella tertiolecta marine green algae residue on crystallization behaviour of poly(lactic acid). <i>Carbohydrate Polymers</i> , 2021 , 261, 117881	10.3	13	
57	Biodiesel production from high free fatty acids content Jatropha curcas L. oil using dual step process. <i>Biomass Conversion and Biorefinery</i> , 2013 , 3, 361-369	2.3	12	
56	Comparative studies of thermal, oxidative and low temperature properties of waste cooking oil and castor oil. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 063104	2.5	12	
55	Rubber Seed Oil Methyl Ester Synthesis, Engine Performance, and Emission Characteristics of Blends. <i>Energy & Energy & E</i>	4.1	11	
54	In situ epoxidation of waste soybean cooking oil for synthesis of biolubricant basestock: A process parameter optimization and comparison with RSM, ANN, and GA. <i>Canadian Journal of Chemical Engineering</i> , 2018 , 96, 1451-1461	2.3	11	
53	Multiscale modelling strategies and experimental insights for the solvation of cellulose and hemicellulose in ionic liquids. <i>Molecular Physics</i> , 2018 , 116, 2108-2128	1.7	11	
52	Thermal degradation kinetics study and thermal cracking of waste cooking oil for biofuel production. <i>Journal of Thermal Analysis and Calorimetry</i> , 2018 , 131, 2157-2165	4.1	11	
51	Antioxidant potential and nutritional compositions of selected ginger varieties found in Northeast India. <i>Industrial Crops and Products</i> , 2019 , 128, 167-176	5.9	11	
50	Evaluation of efficient glucose release using sodium hydroxide and phosphoric acid as pretreating agents from the biomass of Sesbania grandiflora (L.) Pers.: A fast growing tree legume. <i>Bioresource Technology</i> , 2017 , 236, 97-105	11	10	
49	Simultaneous extraction and transesterification of castor seeds for biodiesel production: Assessment of biodegradability. <i>Chemical Engineering Research and Design</i> , 2017 , 107, 373-387	5.5	10	

48	Chemical composition, pretreatments and saccharification of Senna siamea (Lam.) H.S. Irwin & Barneby: An efficient biomass producing tree legume. <i>Bioresource Technology</i> , 2016 , 207, 205-12	11	10
47	Physicochemical and Rheological Characterization of Waste Cooking Oil Epoxide and Their Blends. <i>Waste and Biomass Valorization</i> , 2016 , 7, 23-30	3.2	10
46	Response surface methodology for optimization of bio-lubricant basestock synthesis from high free fatty acids astor oil. <i>Energy Science and Engineering</i> , 2015 , 3, 371-383	3.4	10
45	Biosorption of Cr(VI) on immobilized Hydrilla verticillata in a continuous up-flow packed bed: prediction of kinetic parameters and breakthrough curves. <i>Desalination and Water Treatment</i> , 2012 , 50, 115-124		10
44	Kinetics of reactive absorption of carbon dioxide with solutions of 1,6-hexamethylenediamine in polar protic solvents. <i>Separation and Purification Technology</i> , 2010 , 75, 1-7	8.3	10
43	Influence of Waste Cooking Oil Methyl Ester Biodiesel Blends on the Performance and Emissions of a Diesel Engine. <i>Waste and Biomass Valorization</i> , 2018 , 9, 283-292	3.2	10
42	Removal of Cr(VI) by magnetic iron oxide nanoparticles synthesized from extracellular polymeric substances of chromium resistant acid-tolerant bacterium RTA-01. <i>Journal of Environmental Health Science & Engineering</i> , 2019 , 17, 1001-1016	2.9	10
41	The chemometric approach applied to FTIR spectral data for the analysis of lipid content in microalgae cultivated in different nitrogen sources. <i>Biomass Conversion and Biorefinery</i> , 2016 , 6, 427-4	33 ^{2.3}	9
40	Effect of pre-treatment on solvents extraction and physico-chemical properties of castor seed oil. Journal of Renewable and Sustainable Energy, 2014 , 6, 063108	2.5	9
39	In-Situ Epoxidation of Waste Cooking Oil and Its Methyl Esters for Lubricant Applications: Characterization and Rheology. <i>Lubricants</i> , 2021 , 9, 27	3.1	8
38	Improved Low-Temperature Properties of Chemically Modified High Free Fatty Acid Castor OilMethyl Esters: Blending and Optimization Study. <i>Journal of Energy Engineering - ASCE</i> , 2016 , 142, 04015020	1.7	7
37	Comparative study of physicochemical and rheological property of waste cooking oil, castor oil, rubber seed oil, their methyl esters and blends with mineral diesel fuel. <i>Materials Science for Energy Technologies</i> , 2021 , 4, 148-155	5.2	7
36	Thermal decomposition and kinetics of residual rubber seed cake and shell. <i>Journal of Thermal Analysis and Calorimetry</i> , 2017 , 129, 577-592	4.1	6
35	Thermal Degradation Kinetic Study of Rubber Seed Oil and Its Methyl Esters under Inert Atmosphere. <i>Energy & Discourt Seed Seed Oil and Its Methyl Esters under Inert Atmosphere</i> . <i>Energy & Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Methyl Esters under Inert Discourt Seed Oil and Its Discourt Se</i>	4.1	6
34	Characterization of a low-cost adsorbent derived from agro-waste for ranitidine removal. <i>Materials Science for Energy Technologies</i> , 2020 , 3, 879-888	5.2	6
33	RSM-optimised slow pyrolysis of rice husk for bio-oil production and its upgradation. <i>Energy</i> , 2021 , 225, 120161	7.9	6
32	Liquefaction of lignocellulosic biomass through biochemical conversion pathway: A strategic approach to achieve an industrial titer of bioethanol. <i>Fuel</i> , 2021 , 287, 119545	7.1	6
31	Sono-hydro priming process (ultrasound modulated hydration): Modelling hydration kinetic during paddy germination. <i>Ultrasonics Sonochemistry</i> , 2021 , 70, 105321	8.9	6

(2020-2019)

30	Gingerols infusion and multi-step process optimization for enhancement of color, sensory and functional profiles of candied mango. <i>Food Chemistry</i> , 2019 , 300, 125195	8.5	5
29	In-Situ Epoxidation of Castor Oil Using Heterogeneous Acidic Ion-Exchange Resin Catalyst (IR-120) for Bio-Lubricant Application. <i>Tribology Online</i> , 2015 , 10, 354-359	0.9	5
28	Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and composition 2019 , 1-19		4
27	Jatropha (Jatropha curcas L.). <i>Methods in Molecular Biology</i> , 2015 , 1224, 25-35	1.4	4
26	Infusion of gingerols into candied mango enhances shelf-life by inhibiting browning and associated quality parameters during storage. <i>Food Chemistry</i> , 2020 , 316, 126354	8.5	4
25	COSMO-RS-Based Screening of Antisolvents for the Separation of Sugars from Ionic Liquids: Experimental and Molecular Dynamic Simulations. <i>ACS Omega</i> , 2018 , 3, 7358-7370	3.9	4
24	Analysis of thermal, oxidative and cold flow properties of methyl and ethyl esters prepared from soybean and mustard oils. <i>Journal of Thermal Analysis and Calorimetry</i> , 2017 , 130, 1501-1511	4.1	4
23	Degradation kinetics of anthocyanins from purple rice bran and effect of hydrocolloids on its stability. <i>Journal of Food Process Engineering</i> , 2020 , 43, e13360	2.4	4
22	Rural biorefinery: A viable solution for production of fuel and chemicals in rural India 2019, 21-47		3
21	Long-Term Storage Stability of Epoxides Derived from Vegetable Oils and Their Methyl Esters. <i>Energy & Energy &</i>	4.1	3
20	Cultivating Scenedesmus sp. on substrata coated with cyanobacterial-derived extracellular polymeric substances for enhanced biomass productivity: a novel harvesting approach. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	3
19	Exploration of nutritional, antioxidant and antibacterial properties of unutilized rind and seed of passion fruit from Northeast India. <i>Journal of Food Measurement and Characterization</i> , 2021 , 15, 3153-3	1 2. 8	3
18	Subcritical water hydrolysis of spent Java Citronella biomass for production of reducing sugar. <i>Materials Today: Proceedings</i> , 2018 , 5, 23128-23135	1.4	3
17	Current challenges and advances in butanol production 2019 , 225-256		2
16	Simultaneous ethanol and hydrogen production by fermentation from Bon bogori (Ziziphus rugosa). <i>Renewable Energy Focus</i> , 2018 , 26, 71-80	5.4	2
15	Utilization of nonedible oilseeds in a biorefinery approach with special emphasis on rubber seeds 2020 , 311-336		2
14	Bacterial biofilm-based nitrate and phosphate removal from rubber latex wastewater for sustainable water usage. <i>Water and Environment Journal</i> , 2020 , 34, 170-182	1.7	2
13	Design of a carrier system for gingerols enriched oleoresin tailored for food applications. <i>Food and Bioproducts Processing</i> , 2020 , 124, 296-306	4.9	2

12	Phase transition properties, chemical purity, and solubility of coniferyl alcohol and D-mannose: Experimental and Cosmo-RS predictions. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 1100-1106	5 ^{2.3}	2
11	Evaluation of thermophysical, biochemical and antibacterial properties of unconventional vegetable oil from Northeast India. <i>Materials Science for Energy Technologies</i> , 2021 , 4, 81-91	5.2	2
10	Advancement in Development of Biodiesel Production in the Last Two Decades: An Indian Overview on Raw Materials, Synthesis, By-products, and Application 2017 , 167-188		1
9	Dilute Acid Pretreatment Efficiency on Various Solid Loadings and Effect of Different Neutralizing Agents on Xylulosic Ethanol Production 2019 , 1-7		1
8	Polarity-wise successive solvent extraction of Scenedesmus obliquus biomass and characterization of the crude extracts for broad-spectrum antibacterial activity. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	1
7	Dietary and bioactive properties of the berries and leaves from the underutilized D. Don grown in Northeast India. <i>Food Science and Biotechnology</i> , 2021 , 30, 1555-1569	3	1
6	Influence of extrusion cooking on phytochemical, physical and sorption isotherm properties of rice extrudate infused with microencapsulated anthocyanin. <i>Food Science and Biotechnology</i> , 2021 , 30, 65-70	6 ³	1
5	Structural Characterization of Mixed Rice Straw and Deoiled Algal Cake-Based Substrate as a Potential Bioenergy Feedstock for Microbial Lipids and Carotenoid Production. <i>Waste and Biomass Valorization</i> ,1	3.2	1
4	Utilization of microalgae residue and isolated cellulose nanocrystals: A study on crystallization kinetics of poly(e-caprolactone) bio-composites. <i>International Journal of Biological Macromolecules</i> , 2021 , 191, 521-530	7.9	1
3	Role of lignocellulosic bioethanol in the transportation sector: limitations and advancements in bioethanol production from lignocellulosic biomass 2022 , 57-85		O
2	Development of antioxidant-rich edible active films and coatings incorporated with de-oiled ethanolic green algae extract: a candidate for prolonging the shelf life of fresh produce <i>RSC Advances</i> , 2022 , 12, 13295-13313	3.7	O
1	Processing Thermogravimetric Analysis Data for Pyrolysis Kinetic Study of Microalgae Biomass. Springer Proceedings in Energy, 2021 , 1415-1424	0.2	