Bijay Prakash Tripathi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/131940/publications.pdf

Version: 2024-02-01

59 3,306 31 57 g-index

62 62 62 3856

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation. Journal of Membrane Science, 2022, 643, 120038.	4.1	60
2	Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Advances in Colloid and Interface Science, 2022, 299, 102566.	7.0	33
3	Polymer-based membranes for membrane distillation. , 2022, , 597-635.		O
4	Finely dispersed AgPd bimetallic nanoparticles on a polydopamine modified metal organic framework for diverse catalytic applications. Journal of Catalysis, 2022, 411, 1-14.	3.1	14
5	Zwitterionic microgel based anti(-bio)fouling smart membranes for tunable water filtration and molecular separation. Materials Today Chemistry, 2022, 24, 100779.	1.7	16
6	Polydopamine primed phosphorylated sepiolite-polypropylene nanocomposite with enhanced thermal, rheological, and flame retardant properties. Polymer Degradation and Stability, 2022, 202, 110005.	2.7	4
7	Anti(-bio)fouling Nanostructured Membranes Based on the Cross-Linked Assembly of Stimuli-Responsive Zwitterionic Microgels. ACS Applied Polymer Materials, 2022, 4, 4719-4733.	2.0	10
8	Mechanically strong and resilient shape memory polyurethane with hexamethylene diisocyanate as mixing segment. Journal of Intelligent Material Systems and Structures, 2021, 32, 733-745.	1.4	5
9	Molecularly grafted PVDF membranes with in-air superamphiphilicity and underwater superoleophobicity for oil/water separation. Separation and Purification Technology, 2021, 259, 118068.	3.9	52
10	Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS Applied Bio Materials, 2021, 4, 1077-1114.	2.3	55
11	Facile strategies for synthesis of functionalized mesoporous silicas for the removal of rare-earth elements and heavy metals from aqueous systems. Microporous and Mesoporous Materials, 2021, 315, 110919.	2.2	18
12	Amphiphilic antifouling membranes by polydopamine mediated molecular grafting for water purification and oil/water separation. Journal of Membrane Science, 2021, 630, 119306.	4.1	41
13	Zwitterionic silica nanogel-modified polysulfone nanoporous membranes formed by in-situ method for water treatment. Chemosphere, 2021, 280, 130615.	4.2	10
14	High permeation and antifouling polysulfone ultrafiltration membranes with in situ synthesized silica nanoparticles. Materials Today Communications, 2020, 22, 100784.	0.9	18
15	Polydopamine mediated in situ synthesis of highly dispersed Gold nanoparticles for continuous flow catalysis and environmental remediation. Journal of Environmental Chemical Engineering, 2020, 8, 104397.	3.3	13
16	Polydopamine assisted synthesis of ultrafine silver nanoparticles for heterogeneous catalysis and water remediation. Nano Structures Nano Objects, 2020, 23, 100489.	1.9	24
17	Synthesis and Nanoencapsulation of Poly(ethylene glycol)-Distearates Phase Change Materials for Latent Heat Storage and Release. ACS Applied Energy Materials, 2020, 3, 5965-5976.	2.5	34
18	Polyethylenimineâ€Based Shape Memory Polyurethane with Low Transition Temperature and Excellent Memory Performance. Macromolecular Materials and Engineering, 2020, 305, 2000215.	1.7	15

#	Article	IF	Citations
19	Ultralow fouling membranes by surface modification with functional polydopamine. European Polymer Journal, 2018, 99, 80-89.	2.6	55
20	One pot preparation of polysulfone-amino functionalized SiO2 nanoparticle ultrafiltration membranes for water purification. Journal of Environmental Chemical Engineering, 2018, 6, 4598-4604.	3.3	31
21	Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles. RSC Advances, 2016, 6, 4448-4457.	1.7	84
22	Bienzymatic Sequential Reaction on Microgel Particles and Their Cofactor Dependent Applications. Biomacromolecules, 2016, 17, 1610-1620.	2.6	34
23	Polydopamine modified membranes with in situ synthesized gold nanoparticles for catalytic and environmental applications. Chemical Engineering Journal, 2016, 295, 358-369.	6.6	113
24	Low Fouling Membranes. , 2016, , 1109-1111.		0
25	Ultrathin and Switchable Nanoporous Catalytic Membranes of Polystyreneâ€∢i>b∢/i>â€polyâ€4â€Vinyl Pyridine Block Copolymer Spherical Micelles. Advanced Materials Interfaces, 2015, 2, 1500097.	1.9	23
26	Enhanced Activity of Acetyl CoA Synthetase Adsorbed on Smart Microgel: an Implication for Precursor Biosynthesis. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1500-1507.	4.0	29
27	Porous Functional Membranes. , 2015, , 1-3.		0
28	Low Fouling Membranes., 2015, , 1-3.		1
29	Hollow Microgel Based Ultrathin Thermoresponsive Membranes for Separation, Synthesis, and Catalytic Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17702-17712.	4.0	43
30	Smart Core–Shell Microgel Support for Acetyl Coenzyme A Synthetase: A Step Toward Efficient Synthesis of Polyketide-Based Drugs. Biomacromolecules, 2014, 15, 2776-2783.	2.6	21
31	Thermo responsive ultrafiltration membranes of grafted poly(N-isopropyl acrylamide) via polydopamine. RSC Advances, 2014, 4, 34073-34083.	1.7	41
32	Polyethylene glycol cross-linked sulfonated polyethersulfone based filtration membranes with improved antifouling tendency. Journal of Membrane Science, 2014, 453, 263-274.	4.1	59
33	Functional polyelectrolyte multilayer membranes for water purification applications. Journal of Hazardous Materials, 2013, 252-253, 401-412.	6.5	60
34	Antifouling and antibiofouling pH responsive block copolymer based membranes by selective surface modification. Journal of Materials Chemistry B, 2013, 1, 3397.	2.9	65
35	Antifouling and tunable amino functionalized porous membranes for filtration applications. Journal of Materials Chemistry, 2012, 22, 19981.	6.7	49
36	Highly stable aprotic ionic-liquid doped anhydrous proton-conducting polymer electrolyte membrane for high-temperature applications. Journal of Materials Chemistry, 2011, 21, 4117.	6.7	65

#	Article	IF	CITATIONS
37	Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes. Journal of Power Sources, 2011, 196, 911-919.	4.0	47
38	Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Progress in Polymer Science, 2011, 36, 945-979.	11.8	515
39	Electroâ€membrane process for the separation of amino acids by isoâ€electric focusing. Journal of Chemical Technology and Biotechnology, 2010, 85, 648-657.	1.6	17
40	Organic–inorganic hybrid charged membranes for proteins separation: Isoelectric separation of proteins under coupled driving forces. Separation and Purification Technology, 2010, 70, 280-290.	3.9	28
41	Bifunctionalized organic–inorganic charged nanocomposite membrane for pervaporation dehydration of ethanol. Journal of Colloid and Interface Science, 2010, 346, 54-60.	5.0	37
42	Organic-inorganic hybrid alkaline membranes by epoxide ring opening for direct methanol fuel cell applications. Journal of Membrane Science, 2010, 360, 90-101.	4.1	88
43	Sol–gel derived poly(vinyl alcohol)-3-(2-aminoethylamino) propyl trimethoxysilane: Cross-linked organic–inorganic hybrid beads for the removal of Pb(II) from aqueous solution. Chemical Engineering Journal, 2010, 162, 28-36.	6.6	52
44	Highly charged and stable cross-linked 4,4′-bis(4-aminophenoxy)biphenyl-3,3′-disulfonic acid (BAPBDS)-sulfonated poly(ether sulfone) polymer electrolyte membranes impervious to methanol. Journal of Materials Chemistry, 2010, 20, 8036.	6.7	59
45	lonic transport phenomenon across sol–gel derived organic–inorganic composite mono-valent cation selective membranes. Journal of Membrane Science, 2009, 340, 52-61.	4.1	70
46	Electrochemical membrane reactor: Synthesis of quaternary ammonium hydroxide from its halide by in situ ion substitution. Electrochimica Acta, 2009, 54, 1630-1637.	2.6	31
47	Highly stable proton conducting nanocomposite polymer electrolyte membrane (PEM) prepared by pore modifications: An extremely low methanol permeable PEM. Journal of Membrane Science, 2009, 327, 145-154.	4.1	58
48	Electro-membrane reactor for separation and in situ ion substitution of glutamic acid from its sodium salt. Electrochimica Acta, 2009, 54, 4880-4887.	2.6	24
49	Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. Journal of Hazardous Materials, 2009, 172, 1041-1048.	6.5	208
50	Membrane-based techniques for the separation and purification of proteins: An overview. Advances in Colloid and Interface Science, 2009, 145, 1-22.	7.0	410
51	Surface redox polymerized SPEEK–MO2–PANI (M=Si, Zr and Ti) composite polyelectrolyte membranes impervious to methanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 340, 10-19.	2.3	25
52	Electro-Membrane Process for In Situ Ion Substitution and Separation of Salicylic Acid from its Sodium Salt. Industrial & Engineering Chemistry Research, 2009, 48, 923-930.	1.8	29
53	3-[[3-(Triethoxysilyl)propyl]amino]propane-1-sulfonic Acidâ^'Poly(vinyl alcohol) Cross-Linked Zwitterionic Polymer Electrolyte Membranes for Direct Methanol Fuel Cell Applications. ACS Applied Materials & Direction (1002-1012).	4.0	99
54	An improved process for separation of proteins using modified chitosan–silica cross-linked charged ultrafilter membranes under coupled driving forces: Isoelectric separation of proteins. Journal of Colloid and Interface Science, 2008, 319, 252-262.	5.0	20

#	Article	IF	CITATIONS
55	Phosphonic acid grafted bis(4-Î ³ -aminopropyldiethoxysilylphenyl)sulfone (APDSPS)-poly(vinyl alcohol) cross-linked polyelectrolyte membrane impervious to methanol. Journal of Membrane Science, 2008, 318, 288-297.	4.1	41
56	Functionalized Organicâ^'Inorganic Nanostructured <i>N</i> - <i>p</i> -Carboxy Benzyl Chitosanâ^'Silicaâ^'PVA Hybrid Polyelectrolyte Complex as Proton Exchange Membrane for DMFC Applications. Journal of Physical Chemistry B, 2008, 112, 15678-15690.	1.2	104
57	Sulfonated Poly(styrene- <i>co</i> -maleic anhydride)â^'Poly(ethylene glycol)â^'Silica Nanocomposite Polyelectrolyte Membranes for Fuel Cell Applications. Journal of Physical Chemistry B, 2007, 111, 12454-12461.	1.2	54
58	SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. Journal of Colloid and Interface Science, 2007, 316, 612-621.	5.0	43
59	Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions. Electrochimica Acta, 2007, 52, 6719-6727.	2.6	46