
Alexandre Melo Bailão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1319021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioluminescence imaging in Paracoccidioides spp.: a tool to monitor the infectious processes. Microbes and Infection, 2022, 24, 104975.	1.0	4
2	Comparative proteomics in the three major human pathogenic species of the genus Sporothrix. Microbes and Infection, 2021, 23, 104762.	1.0	12
3	Comparative Proteomic Analysis of Histoplasma capsulatum Yeast and Mycelium Reveals Differential Metabolic Shifts and Cell Wall Remodeling Processes in the Different Morphotypes. Frontiers in Microbiology, 2021, 12, 640931.	1.5	2
4	An efficient Agrobacterium tumefaciens-mediated transformation method for Simplicillium subtropicum (Hypocreales: Cordycipitaceae). Genetics and Molecular Biology, 2021, 44, e20210073.	0.6	1
5	Zinc at the Host–Fungus Interface: How to Uptake the Metal?. Journal of Fungi (Basel, Switzerland), 2020, 6, 305.	1.5	14
6	Metabolic Adaptation of Paracoccidioides brasiliensis in Response to in vitro Copper Deprivation. Frontiers in Microbiology, 2020, 11, 1834.	1.5	10
7	Insights Into Histoplasma capsulatum Behavior on Zinc Deprivation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 573097.	1.8	6
8	Proteome characterization of Paracoccidioides lutzii conidia by using nanoUPLC-MSE. Fungal Biology, 2020, 124, 766-780.	1.1	4
9	Molecular characterization of siderophore biosynthesis in Paracoccidioides brasiliensis. IMA Fungus, 2020, 11, 11.	1.7	21
10	Propionate metabolism in a human pathogenic fungus: proteomic and biochemical analyses. IMA Fungus, 2020, 11, 9.	1.7	18
11	Interaction with Pantoea agglomerans Modulates Growth and Melanization of Sporothrix brasiliensis and Sporothrix schenckii. Mycopathologia, 2019, 184, 367-381.	1.3	5
12	Ten-minute direct detection of Zika virus in serum samples by RT-LAMP. Journal of Virological Methods, 2019, 271, 113675.	1.0	26
13	Metabolic Peculiarities of Paracoccidioides brasiliensis Dimorphism as Demonstrated by iTRAQ Labeling Proteomics. Frontiers in Microbiology, 2019, 10, 555.	1.5	19
14	Immunoproteomic Approach of Extracellular Antigens From Paracoccidioides Species Reveals Exclusive B-Cell Epitopes. Frontiers in Microbiology, 2019, 10, 2968.	1.5	25
15	Characterization of extracellular proteins in members of the Paracoccidioides complex. Fungal Biology, 2018, 122, 738-751.	1.1	31
16	Mechanisms of copper and zinc homeostasis in pathogenic black fungi. Fungal Biology, 2018, 122, 526-537.	1.1	16
17	InÂvitro, exÂvivo and inÂvivo models: A comparative analysis of Paracoccidioides spp. proteomic studies. Fungal Biology, 2018, 122, 505-513.	1.1	8
18	Response ofParacoccidioides lutziito the antifungal camphene thiosemicarbazide determined by proteomic analysis. Future Microbiology, 2018, 13, 1473-1496.	1.0	12

#	Article	IF	CITATIONS
19	Chemoproteomic identification of molecular targets of antifungal prototypes, thiosemicarbazide and a camphene derivative of thiosemicarbazide, in Paracoccidioides brasiliensis. PLoS ONE, 2018, 13, e0201948.	1.1	12
20	Dynamic solid-phase RNA extraction from a biological sample in a polyester-toner based microchip. Analytical Methods, 2017, 9, 2116-2121.	1.3	8
21	Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1304-1314.	1.1	38
22	Loop-mediated isothermal amplification in disposable polyester-toner microdevices. Analytical Biochemistry, 2017, 534, 70-77.	1.1	5
23	Identification of membrane proteome of <i>Paracoccidioides lutzii</i> and its regulation by zinc. Future Science OA, 2017, 3, FSO232.	0.9	51
24	Paracoccidioides brasiliensispresents metabolic reprogramming and secretes a serine proteinase during murine infection. Virulence, 2017, 8, 1417-1434.	1.8	58
25	Analysis ofParacoccidioideslutziimitochondria: a proteomic approach. Yeast, 2017, 34, 179-188.	0.8	5
26	A glyphosate-based herbicide induces histomorphological and protein expression changes in the liver of the female guppy Poecilia reticulata. Chemosphere, 2017, 168, 933-943.	4.2	46
27	Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators of Inflammation, 2017, 2017, 1-16.	1.4	53
28	Molecular and biochemical characterization of carbonic anhydrases of Paracoccidioides. Genetics and Molecular Biology, 2016, 39, 416-425.	0.6	22
29	Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp PLoS Neglected Tropical Diseases, 2016, 10, e0004309.	1.3	19
30	Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics. Fungal Genetics and Biology, 2016, 95, 13-23.	0.9	16
31	Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone. Frontiers in Microbiology, 2015, 6, 616.	1.5	22
32	Paracoccidioides spp. ferrous and ferric iron assimilation pathways. Frontiers in Microbiology, 2015, 6, 821.	1.5	23
33	Characterization of the Paracoccidioides Hypoxia Response Reveals New Insights into Pathogenesis Mechanisms of This Important Human Pathogenic Fungus. PLoS Neglected Tropical Diseases, 2015, 9, e0004282.	1.3	32
34	Transcriptome Profile of the Response of Paracoccidioides spp. to a Camphene Thiosemicarbazide Derivative. PLoS ONE, 2015, 10, e0130703.	1.1	23
35	Macrophage Interaction with Paracoccidioides brasiliensis Yeast Cells Modulates Fungal Metabolism and Generates a Response to Oxidative Stress. PLoS ONE, 2015, 10, e0137619.	1.1	79
36	Analysis of Paracoccidioides secreted proteins reveals fructose 1,6-bisphosphate aldolase as a plasminogen-binding protein. BMC Microbiology, 2015, 15, 53.	1.3	39

Alexandre Melo Bailão

#	Article	IF	CITATIONS
37	Proteomic and histopathological response in the gills of Poecilia reticulata exposed to glyphosate-based herbicide. Environmental Toxicology and Pharmacology, 2015, 40, 175-186.	2.0	39
38	Hydroxamate Production as a High Affinity Iron Acquisition Mechanism in Paracoccidioides Spp. PLoS ONE, 2014, 9, e105805.	1.1	44
39	Transcriptional and Proteomic Responses to Carbon Starvation in Paracoccidioides. PLoS Neglected Tropical Diseases, 2014, 8, e2855.	1.3	65
40	Hemoglobin Uptake by Paracoccidioides spp. Is Receptor-Mediated. PLoS Neglected Tropical Diseases, 2014, 8, e2856.	1.3	66
41	The Endothelin System Has a Significant Role in the Pathogenesis and Progression of Mycobacterium tuberculosis Infection. Infection and Immunity, 2014, 82, 5154-5165.	1.0	12
42	Transcriptional profile of Paracoccidioides spp. in response to itraconazole. BMC Genomics, 2014, 15, 254.	1.2	11
43	Predicting copper-, iron-, and zinc-binding proteins in pathogenic species of the Paracoccidioides genus. Frontiers in Microbiology, 2014, 5, 761.	1.5	28
44	Comparative proteomics in the genus Paracoccidioides. Fungal Genetics and Biology, 2013, 60, 87-100.	0.9	48
45	Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes and Infection, 2013, 15, 347-364.	1.0	96
46	A proteomic view of the response of Paracoccidioides yeast cells to zinc deprivation. Fungal Biology, 2013, 117, 399-410.	1.1	52
47	Comparative transcriptome analysis of Paracoccidioides brasiliensis during inÂvitro adhesion to type I collagen and fibronectin: identification of potential adhesins. Research in Microbiology, 2012, 163, 182-191.	1.0	19
48	Metal Acquisition and Homeostasis in Fungi. Current Fungal Infection Reports, 2012, 6, 257-266.	0.9	18
49	Analysis of the Secretomes of Paracoccidioides Mycelia and Yeast Cells. PLoS ONE, 2012, 7, e52470.	1.1	72
50	Transcript Profiling Using ESTs from Paracoccidioides brasiliensis in Models of Infection. Methods in Molecular Biology, 2012, 845, 381-396.	0.4	4
51	Cellâ€free antigens of <i>Sporothrix brasiliensis</i> : antigenic diversity and application in an immunoblot assay. Mycoses, 2012, 55, 467-475.	1.8	10
52	A quantitative view of the morphological phases of Paracoccidioides brasiliensis using proteomics. Journal of Proteomics, 2011, 75, 572-587.	1.2	69
53	The Homeostasis of Iron, Copper, and Zinc in Paracoccidioides Brasiliensis, Cryptococcus Neoformans Var. Grubii, and Cryptococcus Gattii: A Comparative Analysis. Frontiers in Microbiology, 2011, 2, 49.	1.5	47
54	Genes Potentially Relevant in the Parasitic Phase of the Fungal Pathogen Paracoccidioides brasiliensis. Mycopathologia, 2011, 171, 1-9.	1.3	22

Alexandre Melo Bailão

#	Article	IF	CITATIONS
55	Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis. PLoS Genetics, 2011, 7, e1002345.	1.5	164
56	Proteomic Analysis Reveals That Iron Availability Alters the Metabolic Status of the Pathogenic Fungus Paracoccidioides brasiliensis. PLoS ONE, 2011, 6, e22810.	1.1	61
57	A secreted serine protease of Paracoccidioides brasiliensis and its interactions with fungal proteins. BMC Microbiology, 2010, 10, 292.	1.3	43
58	Glyceraldehyde-3-phosphate dehydrogenase of the entomopathogenic fungus Metarhizium anisopliae: cell-surface localization and role in host adhesion. FEMS Microbiology Letters, 2010, 312, 101-109.	0.7	13
59	Purification of Paracoccidioides brasiliensis catalase P: subsequent kinetic and stability studies. Journal of Biochemistry, 2010, 147, 345-351.	0.9	13
60	Preferential transcription of Paracoccidioides brasiliensis genes: host niche and time-dependent expression. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 486-491.	0.8	8
61	Identification and characterization of antigenic proteins potentially expressed during the infectious process of Paracoccidioides brasiliensis. Microbes and Infection, 2009, 11, 895-903.	1.0	31
62	Comparison of transcription of multiple genes during mycelia transition to yeast cells of Paracoccidioides brasiliensis reveals insights to fungal differentiation and pathogenesis. Mycopathologia, 2008, 165, 259-273.	1.3	14
63	The catalases of Paracoccidioides brasiliensis are differentially regulated: Protein activity and transcript analysis. Fungal Genetics and Biology, 2008, 45, 1470-1478.	0.9	25
64	Transcriptome profiling of Paracoccidioides brasiliensis yeast-phase cells recovered from infected mice brings new insights into fungal response upon host interaction. Microbiology (United Kingdom), 2007, 153, 4194-4207.	0.7	86
65	cDNA representational difference analysis used in the identification of genes expressed by Trichophyton rubrum during contact with keratin. Microbes and Infection, 2007, 9, 1415-1421.	1.0	27
66	A surface 75-kDa protein with acid phosphatase activity recognized by monoclonal antibodies that inhibit Paracoccidioides brasiliensis growth. Microbes and Infection, 2007, 9, 1484-1492.	1.0	28
67	Cloning, characterization and expression of a calnexin homologue from the pathogenic fungusParacoccidioides brasiliensis. Yeast, 2007, 24, 79-87.	0.8	2
68	The transcriptional profile ofParacoccidioides brasiliensisyeast cells is influenced by human plasma. FEMS Immunology and Medical Microbiology, 2007, 51, 43-57.	2.7	37
69	The transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic process. BMC Microbiology, 2007, 7, 29.	1.3	100
70	Kinases of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae: an overview. Genetics and Molecular Biology, 2007, 30, 219-224.	0.6	2
71	Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: Representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes and Infection, 2006, 8, 2686-2697.	1.0	77
72	Isolation and partial characterization of a 30ÂkDa adhesin from Paracoccidioides brasiliensis. Microbes and Infection, 2005, 7, 875-881.	1.0	60

#	Article	IF	CITATIONS
73	Monofunctional catalase P ofParacoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis. Yeast, 2004, 21, 173-182.	0.8	35
74	Molecular Diagnostics of Dengue by Reverse Transcription-Loop Mediated Isothermal Amplification (RT-LAMP) in Disposable Polyester-Toner Microdevices. Journal of the Brazilian Chemical Society, 0, , .	0.6	3