Qunfeng Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1318538/publications.pdf

Version: 2024-02-01

106 papers

8,981 citations

53 h-index 94 g-index

117 all docs

117 docs citations

117 times ranked

8499 citing authors

#	Article	IF	Citations
1	Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chemical Society Reviews, 2012, 41, 1111-1129.	38.1	454
2	A Strong Integrated Strength and Toughness Artificial Nacre Based on Dopamine Cross-Linked Graphene Oxide. ACS Nano, 2014, 8, 9511-9517.	14.6	347
3	High-strength scalable MXene films through bridging-induced densification. Science, 2021, 374, 96-99.	12.6	297
4	High Mechanical Performance Composite Conductor: Multiâ€Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites. Advanced Functional Materials, 2009, 19, 3219-3225.	14.9	289
5	Super-tough MXene-functionalized graphene sheets. Nature Communications, 2020, 11, 2077.	12.8	289
6	Synergistic Toughening of Bioinspired Poly(vinyl alcohol)–Clay–Nanofibrillar Cellulose Artificial Nacre. ACS Nano, 2014, 8, 2739-2745.	14.6	282
7	Ultratough Artificial Nacre Based on Conjugated Crossâ€linked Graphene Oxide. Angewandte Chemie - International Edition, 2013, 52, 3750-3755.	13.8	278
8	Bioinspired Layered Materials with Superior Mechanical Performance. Accounts of Chemical Research, 2014, 47, 1256-1266.	15.6	276
9	Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan. ACS Nano, 2015, 9, 9830-9836.	14.6	239
10	Graphene-based artificial nacre nanocomposites. Chemical Society Reviews, 2016, 45, 2378-2395.	38.1	233
11	Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter, 2011, 7, 5948.	2.7	203
12	A Strong Bioâ€Inspired Layered PNIPAM–Clay Nanocomposite Hydrogel. Angewandte Chemie - International Edition, 2012, 51, 4676-4680.	13.8	198
13	Synergistic Toughening of Graphene Oxide–Molybdenum Disulfide–Thermoplastic Polyurethane Ternary Artificial Nacre. ACS Nano, 2015, 9, 708-714.	14.6	188
14	Bioinspired Grapheneâ€Based Nanocomposites and Their Application in Flexible Energy Devices. Advanced Materials, 2016, 28, 7862-7898.	21.0	178
15	Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of π-π stacking and hydrogen bonding. Carbon, 2017, 111, 807-812.	10.3	178
16	Functionalized Carbonâ€Nanotube Sheet/Bismaleimide Nanocomposites: Mechanical and Electrical Performance Beyond Carbonâ€Fiber Composites. Small, 2010, 6, 763-767.	10.0	175
17	Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nature Communications, 2017, 8, 2011.	12.8	175
18	Learning from Nature: Constructing Integrated Graphene-Based Artificial Nacre. ACS Nano, 2015, 9, 2231-2234.	14.6	168

#	Article	IF	CITATIONS
19	Freeze Casting for Assembling Bioinspired Structural Materials. Advanced Materials, 2017, 29, 1703155.	21.0	160
20	Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon, 2012, 50, 2083-2090.	10.3	153
21	Strong sequentially bridged MXene sheets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27154-27161.	7.1	148
22	Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite. Journal of Materials Chemistry A, 2015, 3, 21194-21200.	10.3	144
23	Highâ€Performance Nanocomposites Inspired by Nature. Advanced Materials, 2017, 29, 1702959.	21.0	138
24	Bioinspired Layered Composites Based on Flattened Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2012, 24, 1838-1843.	21.0	137
25	Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology, 2009, 20, 415702.	2.6	128
26	Nacre-inspired integrated strong and tough reduced graphene oxide–poly(acrylic acid) nanocomposites. Nanoscale, 2016, 8, 5649-5656.	5.6	124
27	High-strength scalable graphene sheets by freezing stretch-induced alignment. Nature Materials, 2021, 20, 624-631.	27.5	117
28	Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5359-5364.	7.1	114
29	Integrated Ternary Bioinspired Nanocomposites <i>via</i> Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes. ACS Nano, 2015, 9, 11568-11573.	14.6	110
30	Ultrastrong Bioinspired Grapheneâ€Based Fibers via Synergistic Toughening. Advanced Materials, 2016, 28, 2834-2839.	21.0	108
31	Ultrastrong Graphene Films via Long-Chain π-Bridging. Matter, 2019, 1, 389-401.	10.0	108
32	Learning from nature: constructing high performance graphene-based nanocomposites. Materials Today, 2017, 20, 210-219.	14.2	104
33	Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10545-10550.	8.0	102
34	Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale, 2013, 5, 6356.	5.6	97
35	Ultraâ€Tough Inverse Artificial Nacre Based on Epoxyâ€Graphene by Freezeâ€Casting. Angewandte Chemie - International Edition, 2019, 58, 7636-7640.	13.8	93
36	An underwater pH-responsive superoleophobic surface with reversibly switchable oil-adhesion. Soft Matter, 2012, 8, 6740.	2.7	89

#	Article	IF	Citations
37	Inverse Nacre-like Epoxy-Graphene Layered Nanocomposites with Integration of High Toughness and Self-Monitoring. Matter, 2020, 2, 220-232.	10.0	87
38	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983.	2.6	86
39	Superior Fatigue Resistant Bioinspired Grapheneâ€Based Nanocomposite via Synergistic Interfacial Interactions. Advanced Functional Materials, 2017, 27, 1605636.	14.9	80
40	Strong bioinspired HPA-rGO nanocomposite films via interfacial interactions for flexible supercapacitors. Nano Energy, 2019, 58, 517-527.	16.0	79
41	Ultratough graphene–black phosphorus films. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8727-8735.	7.1	74
42	Strong, Conductive, Foldable Graphene Sheets by Sequential Ionic and π Bridging. Advanced Materials, 2018, 30, e1802733.	21.0	73
43	Learning from nacre: Constructing polymer nanocomposites. Composites Science and Technology, 2017, 150, 141-166.	7.8	72
44	Thermoresponsive Graphene Membranes with Reversible Gating Regularity for Smart Fluid Control. Advanced Functional Materials, 2019, 29, 1808501.	14.9	70
45	Bioinspired Supertough Graphene Fiber through Sequential Interfacial Interactions. ACS Nano, 2018, 12, 8901-8908.	14.6	67
46	A Butterflyâ€Inspired Hierarchical Lightâ€Trapping Structure towards a Highâ€Performance Polarizationâ€Sensitive Perovskite Photodetector. Angewandte Chemie - International Edition, 2019, 58, 16456-16462.	13.8	67
47	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. Angewandte Chemie - International Edition, 2021, 60, 14307-14312.	13.8	66
48	Bioinspired Green Composite Lotus Fibers. Angewandte Chemie - International Edition, 2014, 53, 3358-3361.	13.8	65
49	Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens. Nature Communications, 2021, 12, 4539.	12.8	64
50	Synergistic reinforcing effect from graphene and carbon nanotubes. Composites Communications, 2018, 10, 122-128.	6.3	63
51	Nearâ€Infraredâ€Driven Photocatalysts: Design, Construction, and Applications. Small, 2021, 17, e1904107.	10.0	63
52	Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective "cool roof― Energy and Environmental Science, 2011, 4, 3364.	30.8	57
53	In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching. Carbon, 2012, 50, 3859-3867.	10.3	54
54	Robust Bioinspired Graphene Film via π–π Cross-linking. ACS Applied Materials & 2017, 9, 24987-24992.	8.0	53

#	Article	IF	Citations
55	Ultratough Bioinspired Graphene Fiber <i>via</i> Sequential Toughening of Hydrogen and Ionic Bonding. ACS Nano, 2018, 12, 12638-12645.	14.6	53
56	Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. Journal of Materials Chemistry A, 2019, 7, 2787-2794.	10.3	53
57	Fatigue Resistant Bioinspired Composite from Synergistic Two-Dimensional Nanocomponents. ACS Nano, 2017, 11, 7074-7083.	14.6	49
58	" <i>Ex situ</i> ―concept for toughening the RTMable BMI matrix composites, Part I: Improving the interlaminar fracture toughness. Journal of Applied Polymer Science, 2008, 109, 1625-1634.	2.6	48
59	A new strategy for air-stable black phosphorus reinforced PVA nanocomposites. Journal of Materials Chemistry A, 2018, 6, 7142-7147.	10.3	47
60	Robust bioinspired graphene-based nanocomposites via synergistic toughening of zinc ions and covalent bonding. Journal of Materials Chemistry A, 2016, 4, 17073-17079.	10.3	44
61	Synergistically toughening nacre-like graphene nanocomposites via gel-film transformation. Journal of Materials Chemistry A, 2017, 5, 16386-16392.	10.3	43
62	Fatigueâ€Resistant Bioinspired Grapheneâ€Based Nanocomposites. Advanced Functional Materials, 2017, 27, 1703459.	14.9	37
63	<i>Glycera</i> â€Inspired Synergistic Interfacial Interactions for Constructing Ultrastrong Grapheneâ€Based Nanocomposites. Advanced Functional Materials, 2018, 28, 1800924.	14.9	35
64	Design Principles of High-Performance Graphene Films: Interfaces and Alignment. Matter, 2020, 3, 696-707.	10.0	35
65	Thermochromic Artificial Nacre Based on Montmorillonite. ACS Applied Materials & amp; Interfaces, 2017, 9, 24993-24998.	8.0	34
66	Enhancing the strength, toughness, and electrical conductivity of twist-spun carbon nanotube yarns by π bridging. Carbon, 2019, 150, 268-274.	10.3	32
67	The fabrication of single-walled carbon nanotube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment. Nanotechnology, 2009, 20, 335601.	2.6	28
68	Bioinspired highly electrically conductive graphene–epoxy layered composites. RSC Advances, 2015, 5, 22283-22288.	3.6	28
69	Bioinspired robust nanocomposites of cooper ions and hydroxypropyl cellulose synergistic toughening graphene oxide. Science China Technological Sciences, 2017, 60, 758-764.	4.0	27
70	Mimicking Nacre by Ice Templating. Angewandte Chemie - International Edition, 2017, 56, 934-935.	13.8	26
71	A Butterflyâ€Inspired Hierarchical Lightâ€Trapping Structure towards a Highâ€Performance Polarizationâ€6ensitive Perovskite Photodetector. Angewandte Chemie, 2019, 131, 16608-16614.	2.0	26
72	Bioinspired graphene-based nanocomposites via ionic interfacial interactions. Composites Communications, 2018, 7, 16-22.	6.3	25

#	Article	IF	CITATIONS
73	Role of Interface Interactions in the Construction of GOâ€Based Artificial Nacres. Advanced Materials Interfaces, 2018, 5, 1800107.	3.7	25
74	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	14.9	25
75	Integrated ternary artificial nacre via synergistic toughening of reduced graphene oxide/double-walled carbon nanotubes/poly(vinyl alcohol). Materials Research Express, 2016, 3, 075002.	1.6	23
76	Multiple Synergistic Toughening Graphene Nanocomposites through Cadmium Ions and Cellulose Nanocrystals. Advanced Materials Interfaces, 2018, 5, 1800145.	3.7	23
77	Chemical Strategies for Making Strong Graphene Materials. Angewandte Chemie - International Edition, 2021, 60, 18397-18410.	13.8	21
78	Strong, conductive aramid fiber functionalized by graphene. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106161.	7.6	20
79	Bioinspired light-driven photonic crystal actuator with MXene-hydrogel muscle. Cell Reports Physical Science, 2022, 3, 100915.	5.6	19
80	Improvement of the Impact Damage Resistance of BMI/Graphite Laminates by the Ex-situ Method. High Performance Polymers, 2006, 18, 907-917.	1.8	18
81	<i>Exâ€situ</i> concept for toughening the RTMable BMI matrix composites. II. Improving the compression after impact. Journal of Applied Polymer Science, 2008, 108, 2211-2217.	2.6	18
82	Low-Cost Coir Fiber Composite with Integrated Strength and Toughness. ACS Sustainable Chemistry and Engineering, 2016, 4, 5450-5455.	6.7	18
83	Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98, 107254.	16.0	17
84	In silicon testing of the mechanical properties of graphene oxide-silk nanocomposites. Acta Mechanica, 2019, 230, 1413-1425.	2.1	16
85	Strong Reduced Graphene Oxide Coated <i>Bombyx mori</i> Silk. Advanced Functional Materials, 2021, 31, 2102923.	14.9	16
86	Ultraâ€Tough Inverse Artificial Nacre Based on Epoxyâ€Graphene by Freezeâ€Casting. Angewandte Chemie, 2019, 131, 7718-7722.	2.0	14
87	Preform-based toughening technology for RTMable high-temperature aerospace composites. Science China Technological Sciences, 2012, 55, 2255-2263.	4.0	13
88	Moiréâ€Potentialâ€Induced Band Structure Engineering in Graphene and Silicene. Small, 2021, 17, e1903769.	10.0	9
89	Smart Nacreâ€inspired Nanocomposites. ChemPhysChem, 2018, 19, 1980-1986.	2.1	8
90	Graphene Sheets: Strong, Conductive, Foldable Graphene Sheets by Sequential Ionic and π Bridging (Adv. Mater. 36/2018). Advanced Materials, 2018, 30, 1870275.	21.0	5

#	Article	IF	CITATIONS
91	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. Angewandte Chemie, 2021, 133, 14428-14433.	2.0	5
92	Comparative Characterization of Multiscale Carbon Fiber Composite with Long and Short MWCNTs at Higher Weight Fractions. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	4
93	Science behind nacre: matrix-directed mineralization at ambient condition. Science China Materials, 2016, 59, 889-891.	6.3	4
94	Bioinspired graphene-based nanocomposites and their application in electronic devices. Chinese Science Bulletin, 2017, 62, 3173-3200.	0.7	3
95	Perlmuttâ€Mimetika durch Iceâ€Templating. Angewandte Chemie, 2017, 129, 954-955.	2.0	2
96	Inside Cover: A Strong Bio-Inspired Layered PNIPAM-Clay Nanocomposite Hydrogel (Angew. Chem. Int.) Tj ETQq0	0 0 rgBT 13.8	Oyerlock 10
97	Innenrücktitelbild: Ultratough Artificial Nacre Based on Conjugated Cross-linked Graphene Oxide (Angew. Chem. 13/2013). Angewandte Chemie, 2013, 125, 3863-3863.	2.0	1
98	Nanocomposites: Highâ€Performance Nanocomposites Inspired by Nature (Adv. Mater. 45/2017). Advanced Materials, 2017, 29, .	21.0	1
99	Multidisciplinary Efforts Advance Materials Research at Beihang University. Advanced Materials, 2017, 29, 1705873.	21.0	O
100	Freeze Casting: Freeze Casting for Assembling Bioinspired Structural Materials (Adv. Mater. 45/2017). Advanced Materials, 2017, 29, .	21.0	0
101	Bioinspired Nanocomposites: Fatigueâ€Resistant Bioinspired Grapheneâ€Based Nanocomposites (Adv. Funct.) Tj	j EŢQg1 1	1 0.784314 rgs
102	Bioinspired Interfacial Materials and Devices at the School of Chemistry at Beihang University. Advanced Functional Materials, 2018, 28, 1805886.	14.9	0
103	Graphene Composites: Glycera -Inspired Synergistic Interfacial Interactions for Constructing Ultrastrong Graphene-Based Nanocomposites (Adv. Funct. Mater. 49/2018). Advanced Functional Materials, 2018, 28, 1870347.	14.9	0
104	RÃ1⁄4cktitelbild: Ultraâ€Tough Inverse Artificial Nacre Based on Epoxyâ€Graphene by Freezeâ€Casting (Angew.) Ţ	ſj Е<u>Ј</u>. gq0	0 0 rgBT /Over
105	Chemical Strategies for Making Strong Graphene Materials. Angewandte Chemie, 2021, 133, 18545-18558.	2.0	O

Titelbild: Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami (Angew. Chem.) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

106