Simona Margareta Coman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1318505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, 2018, 47, 8349-8402.	38.1	493
2	Transesterification of vegetable oils over CaO catalysts. Catalysis Today, 2011, 167, 64-70.	4.4	103
3	Novel Sol–Gel Synthesis of Acidic MgF _{2â^'<i>x</i>} (OH) _{<i>x</i>} Materials. Chemistry - A European Journal, 2008, 14, 11488-11499.	3.3	98
4	Nonprecious Metals Catalyzing Hydroamination and C–N Coupling Reactions. Organic Process Research and Development, 2015, 19, 1327-1355.	2.7	88
5	Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chemistry, 2013, 15, 3077.	9.0	85
6	d -Glucose hydrogenation/hydrogenolysis reactions on noble metal (Ru, Pt)/activated carbon supported catalysts. Catalysis Today, 2015, 257, 281-290.	4.4	81
7	The hydrolytic hydrogenation of cellulose to sorbitol over M (Ru, Ir, Pd, Rh)-BEA-zeolite catalysts. Catalysis Today, 2014, 223, 122-128.	4.4	80
8	Tailorâ€Made MgF ₂ â€Based Catalysts by Sol–Gel Synthesis. European Journal of Inorganic Chemistry, 2011, 2011, 4773-4794.	2.0	74
9	Efficient bio-conversion of glycerol to glycerol carbonate catalyzed by lipase extracted from Aspergillus niger. Green Chemistry, 2012, 14, 478.	9.0	74
10	Preparation and characterization of sulfated zirconia catalysts obtained via various procedures. Applied Catalysis A: General, 1999, 176, 27-43.	4.3	69
11	Efficient glucose dehydration to HMF onto Nb-BEA catalysts. Catalysis Today, 2019, 325, 109-116.	4.4	67
12	NbF ₅ –AlF ₃ Catalysts: Design, Synthesis, and Application in Lactic Acid Synthesis from Cellulose. ACS Catalysis, 2015, 5, 3013-3026.	11.2	66
13	High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 2015, 6, 8561.	12.8	63
14	Chemoselective Reduction of Complexα,β-Unsaturated Ketones to Allylic Alcohols over Ir-Metal Particles onβ Zeolites. Angewandte Chemie - International Edition, 2003, 42, 5333-5336.	13.8	61
15	High hexitols selectivity in cellulose hydrolytic hydrogenation over platinum (Pt) vs. ruthenium (Ru) catalysts supported on micro/mesoporous carbon. Applied Catalysis B: Environmental, 2017, 214, 1-14.	20.2	57
16	Heterogeneous Catalytic Transformation of Citronellal to Menthol in a Single Step on Ir-Beta Zeolite Catalysts. Topics in Catalysis, 2009, 52, 1292-1300.	2.8	55
17	Multifunctional nanocomposites with non-precious metals and magnetic core for 5-HMF oxidation to FDCA. Applied Catalysis B: Environmental, 2020, 278, 119309.	20.2	54
18	Hydroxylated magnesium fluorides as environmentally friendly catalysts for glycerol acetylation. Applied Catalysis B: Environmental, 2011, 107, 260-267.	20.2	52

#	Article	IF	CITATIONS
19	Oneâ€Pot Synthesis of Menthol Catalyzed by a Highly Diastereoselective Au/MgF ₂ Catalyst. Angewandte Chemie - International Edition, 2010, 49, 8134-8138.	13.8	50
20	N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry, 2017, 19, 1999-2005.	9.0	50
21	Ir-Beta zeolite as a heterogeneous catalyst for the one-pot transformation of citronellal to menthol. Chemical Communications, 2004, , 1292-1293.	4.1	49
22	Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Advances, 2013, 3, 4052.	3.6	48
23	Sol–gel prepared nanoscopic metal fluorides – a new class of tunable acid–base catalysts. Catalysis Today, 2010, 152, 2-10.	4.4	46
24	Catalytic Performance of Nanoscopic, Aluminium Trifluorideâ€Based Catalysts in the Synthesis of (allâ€ <i>rac</i>)â€Î±â€Tocopherol. Advanced Synthesis and Catalysis, 2008, 350, 2517-2524.	4.3	45
25	Cyclisation of citronellal over heterogeneous inorganic fluorides—highly chemo- and diastereoselective catalysts for (±)-isopulegol. Chemical Communications, 2009, , 460-462.	4.1	44
26	Reducibility of ruthenium in relation with zeolite structure. Applied Surface Science, 1999, 141, 164-176.	6.1	43
27	Metal-triflate ionic liquid systems immobilized onto mesoporous MS41 materials as new and efficient catalysts for N-acylation. Journal of Catalysis, 2007, 249, 359-369.	6.2	41
28	Benzylation of benzene with benzyl alcohol on zeolite catalysts. Applied Catalysis A: General, 2011, 393, 206-214.	4.3	37
29	Oneâ€Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 607-612.	13.8	37
30	Lignin fragmentation over magnetically recyclable composite Co@Nb2O5@Fe3O4 catalysts. Journal of Catalysis, 2016, 339, 209-227.	6.2	37
31	Reaction of Hexane, Cyclohexane, and Methylcyclopentane over Gallium-, Indium-, and Thallium-Promoted Sulfated Zirconia Catalysts. Journal of Catalysis, 1998, 180, 66-84.	6.2	35
32	Synthesis of Vitamin K ₁ and K ₁ hromanol by Friedel–Crafts Alkylation in Heterogeneous Catalysis. ChemCatChem, 2010, 2, 92-97.	3.7	34
33	Reduction of Prostaglandin Unsaturated Ketones to Secondary Allylic Alcohols by Hydrogen Transfer over Mesoporous-Supported PtSn Catalysts. Journal of Catalysis, 2002, 206, 218-229.	6.2	32
34	Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition of <i>n</i> â€Butylamine to a Ru ^{III} Catalyst. ChemSusChem, 2016, 9, 2307-2311.	6.8	32
35	Upgrade of 5-Hydroxymethylfurfural to Dicarboxylic Acids onto Multifunctional-Based Fe ₃ O ₄ @SiO ₂ Magnetic Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 14292-14301.	6.7	31
36	Friedel–Crafts alkylations on nanoscopic inorganic fluorides. Applied Catalysis A: General, 2011, 391, 169-174.	4.3	29

#	Article	IF	CITATIONS
37	Catalytic hydroprocessing of lignin under thermal and ultrasound conditions. Catalysis Today, 2012, 196, 3-10.	4.4	28
38	Lignin Fragmentation onto Multifunctional Fe ₃ O ₄ @Nb ₂ O ₅ @Co@Re Catalysts: The Role of the Composition and Deposition Route of Rhenium. ACS Catalysis, 2017, 7, 3257-3267.	11.2	28
39	Bifunctional Nanoscopic Catalysts for the One-Pot Synthesis of (±)-Menthol from Citral. Topics in Catalysis, 2012, 55, 680-687.	2.8	25
40	Novel ruthenium–terpyridyl complex for direct oxidation of amines to nitriles. Catalysis Science and Technology, 2013, 3, 2646.	4.1	25
41	Transformation of C6 hydrocarbons over sulfated zirconia catalysts. Applied Catalysis A: General, 1999, 176, 45-62.	4.3	24
42	Snâ€Ðoped Hydroxylated MgF ₂ Catalysts for the Fast and Selective Saccharification of Cellulose to Glucose. ChemSusChem, 2012, 5, 1708-1711.	6.8	23
43	New heterogeneous catalysts for greener routes in the synthesis of fine chemicals. Journal of Catalysis, 2007, 251, 388-399.	6.2	22
44	Postsynthetic Modification of a Metal–Organic Framework (MOF) Structure for Enantioselective Catalytic Epoxidation. ChemPlusChem, 2013, 78, 443-450.	2.8	22
45	Chiral supported ionic liquid phase (CSILP) catalysts for greener asymmetric hydrogenation processes. Catalysis Today, 2013, 200, 63-73.	4.4	21
46	Direct Synthesis of Sorbitol and Glycerol from Cellulose over Ionic Ru/Magnetite Nanoparticles in the Absence of External Hydrogen. ChemSusChem, 2013, 6, 2090-2094.	6.8	20
47	RuCl ₃ Supported on Nâ€Doped Graphene as a Reusable Catalyst for the Oneâ€5tep Glucose Oxidation to Succinic Acid. ChemCatChem, 2017, 9, 3314-3321.	3.7	20
48	Nb-Based Zeolites: Efficient bi-Functional Catalysts for the One-Pot Synthesis of Succinic Acid from Glucose. Molecules, 2017, 22, 2218.	3.8	20
49	Direct oxidation of amines to nitriles in the presence of ruthenium-terpyridyl complex immobilized on ILs/SILP. Catalysis Science and Technology, 2015, 5, 2696-2704.	4.1	18
50	Nitrogen-doped graphene as metal free basic catalyst for coupling reactions. Journal of Catalysis, 2019, 376, 238-247.	6.2	18
51	From useless humins by-product to Nb@graphite-like carbon catalysts highly efficient in HMF synthesis. Applied Catalysis A: General, 2021, 618, 118130.	4.3	18
52	Highly Efficient, Easily Recoverable, and Recyclable Re–SiO2–Fe3O4Catalyst for the Fragmentation of Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 9606-9618.	6.7	17
53	Stereocontrolled hydrogenation of prostaglandin intermediates over Ru–MCM-41 catalysts. Journal of Molecular Catalysis A, 1999, 146, 247-256.	4.8	16
54	Efficient magnetic and recyclable SBILC (supported basic ionic liquid catalyst)-based heterogeneous organocatalysts for the asymmetric epoxidation of trans-methylcinnamate. Catalysis Science and Technology, 2015, 5, 729-737.	4.1	16

#	Article	IF	CITATIONS
55	Heterogeneous amination of bromobenzene over titania-supported gold catalysts. Journal of Catalysis, 2012, 296, 43-54.	6.2	15
56	Catalytic transformation of the marine polysaccharide ulvan into rare sugars, tartaric and succinic acids. Catalysis Today, 2022, 383, 345-357.	4.4	15
57	Low metal loading Ru-MCM-41 stereocontrolled hydrogenation of prostaglandin intermediates. Chemical Communications, 1999, , 2175-2176.	4.1	14
58	Efficient magnetic recoverable acid-functionalized-carbon catalysts for starch valorization to multiple bio-chemicals. Catalysis Today, 2017, 279, 45-55.	4.4	14
59	Comparative behavior of various lipases in benign water and ionic liquids solvents. Journal of Molecular Catalysis A, 2008, 279, 223-229.	4.8	13
60	Unusual Behavior of a Novel Heterogeneous Chiral Dimer Cr(III)â^'Salen Complex in the Epoxidation/Epoxide Ring-Opening Reaction of trans-Methylcinnamate Ester. Journal of Physical Chemistry C, 2011, 115, 1112-1122.	3.1	13
61	Diastereoselective Hydrogenation of some Prostaglandins Intermediates and Compounds over MCM-41 Supported Ru. Studies in Surface Science and Catalysis, 1998, 117, 501-508.	1.5	12
62	Synthesis, characterization and catalytic behavior of SnTf/MCM-41 and SnTf/UVM-7 as new green catalysts for etherification reactions. Journal of Materials Science, 2009, 44, 6693-6700.	3.7	12
63	Oneâ€Pot Hydroacetylation of Menadione (Vitamin K ₃) to Menadiol Diacetate (Vitamin) Tj ETQq1	1 0,784314 4.3	1 rgBT /Overl ⊈2
64	Magnetic nanocomposites for an efficient valorization of biomass. Journal of Applied Physics, 2015, 117, 17D724.	2.5	12
65	Cellulose Capitalization to Bio-chemicals in the Presence of Magnetic Nanoparticle Catalysts. Topics in Catalysis, 2014, 57, 1463-1469.	2.8	11
66	Direct conversion of cellulose to α-hydroxy acids (AHAs) over Nb2O5-SiO2-coated magnetic nanoparticles. Green Processing and Synthesis, 2017, 6, .	3.4	11
67	Optimized Nb-Based Zeolites as Catalysts for the Synthesis of Succinic Acid and FDCA. Molecules, 2020, 25, 4885.	3.8	11
68	Diastereoselective hydrogenation of a prostaglandin intermediate over ru supported on different molecular sieves. Studies in Surface Science and Catalysis, 1997, , 207-214.	1.5	10
69	Replacing benzyl chloride with benzyl alcohol in heterogeneous catalytic benzylation of aromatic compounds. Pure and Applied Chemistry, 2012, 84, 427-437.	1.9	10
70	Efficient Sc triflate mesoporous-based catalysts for the synthesis of 4,4′-methylenedianiline from aniline and 4-aminobenzylalcohol. Journal of Catalysis, 2012, 287, 76-85.	6.2	9
71	Levulinate-intercalated LDH: A potential heterogeneous organocatalyst for the green epoxidation of α,β-unsaturated esters. Catalysis Today, 2018, 306, 154-165.	4.4	9
72	Catalytic features of Nb-based nanoscopic inorganic fluorides for an efficient one-pot conversion of cellulose to lactic acid. Catalysis Today, 2018, 306, 102-110.	4.4	9

#	Article	IF	CITATIONS
73	Metal Triflates Incorporated in Mesoporous Catalysts for Green Synthesis of Fine Chemicals. Topics in Catalysis, 2009, 52, 571-578.	2.8	8
74	Heterogeneous Catalysis for Biodiesel Production. , 2013, , 93-136.		8
75	Comparative hydroamination of aniline and substituted anilines with styrene on different zeolites, triflate based catalysts and their physical mixtures. Applied Catalysis A: General, 2014, 474, 230-235.	4.3	8
76	Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives. Chemical Communications, 2017, 53, 10271-10274.	4.1	8
77	Synthesis, characterization and catalytic behavior of AlTf/UVM-7 as new green catalysts for the glycols etherification reactions. Applied Catalysis A: General, 2010, 372, 58-66.	4.3	7
78	AlTf-UVM-7—Highly active catalysts for the synthesis of long chain symmetrical ethers and non-ionic surfactant structures. Chemical Engineering Journal, 2010, 161, 363-370.	12.7	7
79	Biocatalytic designs for the conversion of renewable glycerol into glycerol carbonate as a value-added product. Open Chemistry, 2014, 12, 1262-1270.	1.9	7
80	Niobia-based magnetic nanocomposites: Design and application in direct glucose dehydration to HMF. Catalysis Today, 2021, 366, 48-56.	4.4	7
81	Acylation of sulfonamines using silica grafted 1-butyl-3-(3-triethoxysilylpropyl)-4,5-dihydroimidazolium ionic liquids as catalysts. Catalysis Today, 2008, 131, 98-103.	4.4	6
82	Mesoporous Tin-Triflate Based Catalysts for Transesterification of Sunflower Oil. Topics in Catalysis, 2010, 53, 763-772.	2.8	6
83	From Glucose Direct to Succinic Acid: an Optimized Recyclable Bi-functional Ru@MNP-MWCNT Catalyst. Topics in Catalysis, 2018, 61, 1866-1876.	2.8	6
84	Magnetic Fe@Y Composites as Efficient Recoverable Catalysts for the Valorization of the Recalcitrant Marine Sulfated Polysaccharide Ulvan. ACS Sustainable Chemistry and Engineering, 2020, 8, 319-328.	6.7	6
85	Title is missing!. Catalysis Letters, 1998, 52, 231-238.	2.6	5
86	New organic-inorganic LDH composites: Synthesis, characterization and catalytic behavior in the green epoxidation of α, β-unsaturated esters. Inorganica Chimica Acta, 2018, 475, 127-132.	2.4	5
87	Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. Journal of Catalysis, 2020, 390, 135-149.	6.2	5
88	Modified ruthenium exchanged zeolites for enantioselective hydrogenation. Studies in Surface Science and Catalysis, 1995, 91, 561-570.	1.5	4
89	Heterogeneous Diastereoselective Catalysis - A Powerful Strategy Toward C(15) Stereoselectivity from PGF _{2α} Analogues Structure. Current Pharmaceutical Design, 2015, 21, 5558-5572.	1.9	4
90	Chemoselective reduction of prostaglandin intermediates by liquid-phase hydrogen transfer on Pt–Sn/MCM-41 catalysts. Microporous and Mesoporous Materials, 2001, 44-45, 477-482.	4.4	3

#	Article	IF	CITATIONS
91	Bimetallic Oriented (Au/Cu ₂ O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu ₂ O Grapheneâ€Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry, 2018, 2018, 6185-6190.	2.4	3
92	Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions. Topics in Catalysis, 2018, 61, 1449-1457.	2.8	3
93	Diastereoselective hydrogenation of a prostaglandinic intermediate over chirally modified Pt/Al2O3. Catalysis Today, 2000, 60, 185-192.	4.4	2
94	Hydrogenation of prostaglandin unsaturated ketones over Ru-containing *BEA zeolites. Studies in Surface Science and Catalysis, 2004, , 2696-2702.	1.5	2
95	Investigation of acidic properties of Ir-*BEA zeolites by Py-, DTBP-, and Qu-FTIR. Studies in Surface Science and Catalysis, 2005, 158, 909-916.	1.5	2
96	Efficient and Green Access to Functionalized and Highly Constrained ÂHeteropolycyclic Derivatives via a Microwave-Accelerated Diels-Alder ÂCycloaddition and Heterogeneous Hydrogenation Sequence. Synlett, 2006, 2006, 1075-1079.	1.8	2
97	Spillover effects induced by rare-earth metals on Pd/γ-Al2O3 in vÃnylbenzenes hydrogenation. Studies in Surface Science and Catalysis, 1997, , 161-170.	1.5	1
98	Co-Nb2O5/SiO2 sol-gel catalysts: preparation implications on the texture and acidity of the support and dimension of the metal particle. Studies in Surface Science and Catalysis, 1998, 118, 691-698.	1.5	1
99	Transformation of 5-hydroxymethylene-5H-6,7-dihydrodibenzo[a,c]cyclohepten-6-one over Ru-containing BEA zeolites. Journal of Molecular Catalysis A, 2004, 220, 257-265.	4.8	1
100	Diastereoselective hydrogenation of Formoterol intermediate over M(Ir, Pd, Pt, Rh, Ru)/BEA zeolite catalysts. Catalysis Today, 2020, 354, 100-108.	4.4	0
101	Green catalytic synthesis of phenprocoumon. Studia Universitatis Babes-Bolyai Chemia, 2019, 64, 47-58.	0.2	0