Fabiola Vilaseca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1317970/publications.pdf

Version: 2024-02-01

85

all docs

85 3,297 34 papers citations h-index

85

docs citations

h-index g-index

85
2951
times ranked citing authors

55

#	Article	IF	CITATIONS
1	Waterâ€assisted melt processing of cellulose biocomposites with poly(εâ€caprolactone) or poly(ethyleneâ€acrylic acid) for the production of carton screw caps. Journal of Applied Polymer Science, 2022, 139, 51615.	1.3	4
2	Stiffening Potential of Lignocellulosic Fibers in Fully Biobased Composites: The Case of Abaca Strands, Spruce TMP Fibers, Recycled Fibers from ONP, and Barley TMP Fibers. Polymers, 2021, 13, 619.	2.0	10
3	Bacterial Cellulose Network from Kombucha Fermentation Impregnated with Emulsion-Polymerized Poly(methyl methacrylate) to Form Nanocomposite. Polymers, 2021, 13, 664.	2.0	16
4	High Performance PA 6/Cellulose Nanocomposites in the Interest of Industrial Scale Melt Processing. Polymers, 2021, 13, 1495.	2.0	12
5	Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures. Nanomaterials, 2021, 11, 2127.	1.9	11
6	Exploring the Potential of Cotton Industry Byproducts in the Plastic Composite Sector: Macro and Micromechanics Study of the Flexural Modulus. Materials, 2021, 14, 4787.	1.3	4
7	Effective Young's Modulus Estimation of Natural Fibers through Micromechanical Models: The Case of Henequen Fibers Reinforced-PP Composites. Polymers, 2021, 13, 3947.	2.0	8
8	Xyloglucan coating for enhanced strength and toughness in wood fibre networks. Carbohydrate Polymers, 2020, 229, 115540.	5.1	6
9	Effect of NaOH Treatment on the Flexural Modulus of Hemp Core Reinforced Composites and on the Intrinsic Flexural Moduli of the Fibers. Polymers, 2020, 12, 1428.	2.0	4
10	Assessment of Fiber Orientation on the Mechanical Properties of PA6/Cellulose Composite. Applied Sciences (Switzerland), 2020, 10, 5565.	1.3	11
11	Feasibility of Barley Straw Fibers as Reinforcement in Fully Biobased Polyethylene Composites: Macro and Micro Mechanics of the Flexural Strength. Molecules, 2020, 25, 2242.	1.7	15
12	Biocomposites from Rice Straw Nanofibers: Morphology, Thermal and Mechanical Properties. Materials, 2020, 13, 2138.	1.3	21
13	Inkjetâ€Printed Diodes: Nanopaperâ€Based Organic Inkjetâ€Printed Diodes (Adv. Mater. Technol. 6/2020). Advanced Materials Technologies, 2020, 5, 2070031.	3.0	1
14	Influence of lignin content on the intrinsic modulus of natural fibers and on the stiffness of composite materials. International Journal of Biological Macromolecules, 2020, 155, 81-90.	3.6	23
15	Valorization of Hemp Core Residues: Impact of NaOH Treatment on the Flexural Strength of PP Composites and Intrinsic Flexural Strength of Hemp Core Fibers. Biomolecules, 2020, 10, 823.	1.8	10
16	Nanopaperâ€Based Organic Inkjetâ€Printed Diodes. Advanced Materials Technologies, 2020, 5, 1900773.	3.0	10
17	Modeling the Stiffness of Coupled and Uncoupled Recycled Cotton Fibers Reinforced Polypropylene Composites. Polymers, 2019, 11, 1725.	2.0	11
18	Interface and micromechanical characterization of tensile strength of bio-based composites from polypropylene and henequen strands. Industrial Crops and Products, 2019, 132, 319-326.	2.5	40

#	Article	IF	Citations
19	Biobased Composites from Biobased-Polyethylene and Barley Thermomechanical Fibers: Micromechanics of Composites. Materials, 2019, 12, 4182.	1.3	27
20	Explorative Study on the Use of Curau \tilde{A}_i Reinforced Polypropylene Composites for the Automotive Industry. Materials, 2019, 12, 4185.	1.3	18
21	Macro and micro-mechanics behavior of stifness in alkaline treated hemp core fibres polypropylene-based composites. Composites Part B: Engineering, 2018, 144, 118-125.	5.9	40
22	Poly($\hat{l}\mu$ -caprolactone) Biocomposites Based on Acetylated Cellulose Fibers and Wet Compounding for Improved Mechanical Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 6753-6760.	3.2	31
23	Macro and micromechanical preliminary assessment of the tensile strength of particulate rapeseed sawdust reinforced polypropylene copolymer biocomposites for its use as building material. Construction and Building Materials, 2018, 168, 422-430.	3.2	17
24	Extending the value chain of corn agriculture by evaluating technical feasibility and the quality of the interphase of chemo-thermomechanical fiber from corn stover reinforced polypropylene biocomposites. Composites Part B: Engineering, 2018, 137, 16-22.	5.9	17
25	Stiffness of Rapeseed Sawdust Polypropylene Composite and Its Suitability as a Building Material. BioResources, 2018, 13, .	0.5	0
26	High electrical and electrochemical properties in bacterial cellulose/polypyrrole membranes. European Polymer Journal, 2017, 91, 1-9.	2.6	38
27	Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 96, 147-154.	3.8	27
28	Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices. Carbohydrate Polymers, 2017, 165, 86-95.	5.1	70
29	Cellulose polymer composites (WPC)., 2017,, 115-139.		10
30	Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole. Carbohydrate Polymers, 2016, 152, 361-369.	5.1	65
31	Semichemical fibres of Leucaena collinsii reinforced polypropylene composites: Flexural characterisation, impact behaviour and water uptake properties. Composites Part B: Engineering, 2016, 97, 176-182.	5 . 9	24
32	Combined effect of carbon nanotubes and polypyrrole on the electrical properties of cellulose-nanopaper. Cellulose, 2016, 23, 3925-3937.	2.4	19
33	EXPERIENCES OF WORKPLACE STAY WITHIN A RESEARCH GROUP. , 2016, , .		0
34	Aplicaci \tilde{A}^3 n de celulosa nanofibrilada, en masa y superficie, a la pulpa mec \tilde{A}_i nica de muela de piedra: una s \tilde{A}^3 lida alternativa al tratamiento cl \tilde{A}_i sico de refinado. Maderas: Ciencia Y Tecnologia, 2015, , 0-0.	0.7	3
35	All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Industrial Crops and Products, 2015, 76, 166-173.	2.5	64
36	Thermoplasticized starch modified by reactive blending with epoxidized soybean oil. Industrial Crops and Products, 2014, 53, 261-267.	2.5	48

#	Article	IF	Citations
37	From paper to nanopaper: evolution of mechanical and physical properties. Cellulose, 2014, 21, 2599-2609.	2.4	118
38	Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose, 2013, 20, 1425-1435.	2.4	76
39	Analysis of tensile and flexural modulus in hemp strands/polypropylene composites. Composites Part B: Engineering, 2013, 47, 339-343.	5.9	52
40	All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose. Cellulose, 2013, 20, 2909-2921.	2.4	57
41	Impact and flexural properties of stoneâ€ground wood pulpâ€reinforced polypropylene composites. Polymer Composites, 2013, 34, 842-848.	2.3	33
42	Thermal and mechanical properties of maize fibres–high density polyethylene biocomposites. Journal of Composite Materials, 2013, 47, 1387-1397.	1.2	38
43	Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polymer Composites, 2013, 34, 1999-2007.	2.3	18
44	Thermoplastic Starch-based Composites Reinforced with Rape Fibers: Water Uptake and Thermomechanical Properties. BioResources, 2013, 8, .	0.5	16
45	Suitability of Rapeseed Chemithermomechanical Pulp as Raw Material in Papermaking. BioResources, 2013, 8, .	0.5	21
46	Biocomposites from Starch-based Biopolymer and Rape Fibers. Part I: Interfacial Analysis and Intrinsic Properties of Rape Fibers. Current Organic Chemistry, 2013, 17, 1633-1640.	0.9	4
47	Biocomposites from Starch-based Biopolymer and Rape Fibers. Part II: Stiffening, Flexural and Impact Strength, and Product Development. Current Organic Chemistry, 2013, 17, 1641-1646.	0.9	5
48	Micromechanics of hemp strands in polypropylene composites. Composites Science and Technology, 2012, 72, 1209-1213.	3.8	75
49	PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study. Composites Part B: Engineering, 2012, 43, 3453-3461.	5.9	53
50	NANOFIBRILLATED CELLULOSE AS PAPER ADDITIVE IN EUCALYPTUS PULPS. BioResources, 2012, 7, .	0.5	155
51	ACOUSTIC PROPERTIES OF POLYPROPYLENE COMPOSITES REINFORCED WITH STONE GROUNDWOOD. BioResources, 2012, 7, .	0.5	58
52	MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES. BioResources, 2012, 7, .	0.5	36
53	Structural changes in organosolv lignin during its reaction in an alkaline medium. Journal of Applied Polymer Science, 2012, 126, E214.	1.3	8
54	Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Composites Science and Technology, 2012, 72, 858-863.	3.8	155

#	Article	IF	Citations
55	Processing and properties of biodegradable composites based on Mater-Bi® and hemp core fibres. Resources, Conservation and Recycling, 2012, 59, 38-42.	5.3	36
56	Design and Development of Fully Biodegradable Products from Starch Biopolymer and Corn Stalk Fibres. Journal of Biobased Materials and Bioenergy, 2012, 6, 410-417.	0.1	7
57	Mechanical Behavior of Thermo-Mechanical Corn Stalk Fibers in High Density Polyethylene Composites. Journal of Biobased Materials and Bioenergy, 2012, 6, 463-469.	0.1	5
58	STONE-GROUND WOOD PULP-REINFORCED POLYPROPYLENE COMPOSITES: WATER UPTAKE AND THERMAL PROPERTIES. BioResources, 2012, 7, .	0.5	11
59	BIO-BASED COMPOSITES FROM STONE GROUNDWOOD APPLIED TO NEW PRODUCT DEVELOPMENT. BioResources, 2012, 7, .	0.5	17
60	Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chemical Engineering Journal, 2011, 166, 1170-1178.	6.6	95
61	Biocomposites from Musa textilis and polypropylene: Evaluation of flexural properties and impact strength. Composites Science and Technology, 2011, 71, 122-128.	3.8	70
62	Preparation and properties of starch-based biopolymers modified with difunctional isocyanates. BioResources, 2011, 6, 81-102.	0.5	8
63	Recycling of Paper Mill Sludge as Filler/Reinforcement in Polypropylene Composites. Journal of Polymers and the Environment, 2010, 18, 407-412.	2.4	20
64	Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties. Bioresource Technology, 2010, 101, 387-395.	4.8	124
65	Low environmental impact bleaching sequences for attaining high brightness level with eucalyptus SPP pulp. Brazilian Journal of Chemical Engineering, 2009, 26, 11-22.	0.7	1
66	Biocomposites based on <i>Alfa</i> fibers and starchâ€based biopolymer. Polymers for Advanced Technologies, 2009, 20, 1068-1075.	1.6	68
67	Behavior of biocomposite materials from flax strands and starch-based biopolymer. Chemical Engineering Science, 2009, 64, 2651-2658.	1.9	61
68	Recovered and recycled Kraft fibers as reinforcement of PP composites. Chemical Engineering Journal, 2008, 138, 586-595.	6.6	30
69	Soda-Treated Sisal/Polypropylene Composites. Journal of Polymers and the Environment, 2008, 16, 35-39.	2.4	41
70	Blocked diisocyanates as reactive coupling agents: Application to pine fiber–polypropylene composites. Carbohydrate Polymers, 2008, 74, 106-113.	5.1	52
71	Full exploitation of Cannabis sativa as reinforcement/filler of thermoplastic composite materials. Composites Part A: Applied Science and Manufacturing, 2007, 38, 369-377.	3.8	89
72	Influence of the Processing Conditions on the Mechanical Properties of Chitin Whisker Reinforced Poly(caprolactone) Nanocomposites. Journal of Biobased Materials and Bioenergy, 2007, 1, 341-350.	0.1	19

#	Article	IF	Citations
73	Effect of silane coupling agents on the properties of pine fibers/polypropylene composites. Journal of Applied Polymer Science, 2007, 103, 3706-3717.	1.3	77
74	Evaluation of the reinforcing effect of ground wood pulp in the preparation of polypropylene-based composites coupled with maleic anhydride grafted polypropylene. Journal of Applied Polymer Science, 2007, 105, 3588-3596.	1.3	61
75	Blocked isocyanates as coupling agents for cellulose-based composites. Carbohydrate Polymers, 2007, 68, 537-543.	5.1	73
76	Chemical modification of jute fibers for the production of green-composites. Journal of Hazardous Materials, 2007, 144, 730-735.	6.5	197
77	Composite materials derived from biodegradable starch polymer and jute strands. Process Biochemistry, 2007, 42, 329-334.	1.8	142
78	Comparison of cationic demand between olive wood organosolv pulp and eucaliptus kraft pulp. Process Biochemistry, 2006, 41, 1602-1607.	1.8	16
79	Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. Journal of Applied Polymer Science, 2006, 102, 833-840.	1.3	98
80	Hemp Strands: PP Composites by Injection Molding: Effect of Low Cost Physico-chemical Treatments. Journal of Reinforced Plastics and Composites, 2006, 25, 313-327.	1.6	37
81	A comparative study of the effect of refining on organosolv pulp from olive trimmings and kraft pulp from eucalyptus wood. Bioresource Technology, 2005, 96, 1125-1129.	4.8	28
82	Chemical treatment for improving wettability of biofibres into thermoplastic matrices. Composite Interfaces, 2005, 12, 725-738.	1.3	15
83	Hemp Strands as Reinforcement of Polystyrene Composites. Chemical Engineering Research and Design, 2004, 82, 1425-1431.	2.7	37
84	Enzymic deinking of old newspapers with cellulase. Process Biochemistry, 2003, 38, 1063-1067.	1.8	41
85	Preference for Î ² -H elimination in the termination of the Ni-promoted carbonylative cycloaddition of 2-haloethylidene-cycloalkanes and alkynes. Journal of Organometallic Chemistry, 1998, 551, 107-115.	0.8	8