James A Olzmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1317744/publications.pdf Version: 2024-02-01

LAMES A OLZMANN

#	Article	lF	CITATIONS
1	The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575, 688-692.	13.7	1,756
2	Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 2019, 20, 137-155.	16.1	1,430
3	Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State. Cell Chemical Biology, 2019, 26, 420-432.e9.	2.5	556
4	PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1. PLoS Biology, 2007, 5, e172.	2.6	547
5	High glucoseâ€induced oxidative stress and mitochondrial dysfunction in neurons. FASEB Journal, 2002, 16, 1738-1748.	0.2	462
6	Defining human ERAD networks through an integrative mapping strategy. Nature Cell Biology, 2012, 14, 93-105.	4.6	439
7	Oxidative Damage of DJ-1 Is Linked to Sporadic Parkinson and Alzheimer Diseases. Journal of Biological Chemistry, 2006, 281, 10816-10824.	1.6	430
8	DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy. Developmental Cell, 2017, 42, 9-21.e5.	3.1	397
9	Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. Journal of Cell Biology, 2007, 178, 1025-1038.	2.3	309
10	The Mammalian Endoplasmic Reticulum-Associated Degradation System. Cold Spring Harbor Perspectives in Biology, 2013, 5, a013185-a013185.	2.3	279
11	Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nature Chemical Biology, 2019, 15, 747-755.	3.9	271
12	Familial Parkinson's Disease-associated L166P Mutation Disrupts DJ-1 Protein Folding and Function. Journal of Biological Chemistry, 2004, 279, 8506-8515.	1.6	253
13	A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes. Developmental Cell, 2018, 44, 97-112.e7.	3.1	240
14	Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1345-1350.	3.3	184
15	Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nature Structural and Molecular Biology, 2011, 18, 1147-1152.	3.6	169
16	A Genome-wide ER-phagy Screen Highlights Key Roles of Mitochondrial Metabolism and ER-Resident UFMylation. Cell, 2020, 180, 1160-1177.e20.	13.5	163
17	Parkin-mediated K63-linked polyubiquitination: A signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy, 2008, 4, 85-87.	4.3	160
18	Uncoupling Proteins Prevent Glucose-Induced Neuronal Oxidative Stress and Programmed Cell Death. Diabetes, 2004, 53, 726-734.	0.3	158

JAMES A OLZMANN

#	Article	IF	CITATIONS
19	Spongiform Neurodegeneration-associated E3 Ligase Mahogunin Ubiquitylates TSG101 and Regulates Endosomal Trafficking. Molecular Biology of the Cell, 2007, 18, 1129-1142.	0.9	125
20	Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition. Nature Chemical Biology, 2019, 15, 776-785.	3.9	118
21	Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochemical Society Transactions, 2010, 38, 144-149.	1.6	117
22	Endoplasmic Reticulum–Associated Degradation and Lipid Homeostasis. Annual Review of Nutrition, 2016, 36, 511-542.	4.3	113
23	Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1166-1177.	1.2	109
24	Unassembled CD147 is an endogenous endoplasmic reticulum–associated degradation substrate. Molecular Biology of the Cell, 2012, 23, 4668-4678.	0.9	78
25	Lipid droplets and lipotoxicity during autophagy. Autophagy, 2017, 13, 2002-2003.	4.3	68
26	Mutations associated with Charcot–Marie–Tooth disease cause SIMPLE protein mislocalization and degradation by the proteasome and aggresome–autophagy pathways. Journal of Cell Science, 2011, 124, 3319-3331.	1.2	67
27	Parthenolide Covalently Targets and Inhibits Focal Adhesion Kinase in Breast Cancer Cells. Cell Chemical Biology, 2019, 26, 1027-1035.e22.	2.5	58
28	Protein Quality Control and Lipid Droplet Metabolism. Annual Review of Cell and Developmental Biology, 2020, 36, 115-139.	4.0	55
29	Lipid Droplet Formation Is Dispensable for Endoplasmic Reticulum-associated Degradation. Journal of Biological Chemistry, 2011, 286, 27872-27874.	1.6	50
30	Selective enrichment of DJ-1 protein in primate striatal neuronal processes: Implications for Parkinson's disease. Journal of Comparative Neurology, 2007, 500, 585-599.	0.9	47
31	Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nature Chemical Biology, 2022, 18, 751-761.	3.9	47
32	Context-dependent regulation of ferroptosis sensitivity. Cell Chemical Biology, 2022, 29, 1409-1418.e6.	2.5	42
33	Characterization of protein complexes of the endoplasmic reticulum-associated degradation E3 ubiquitin ligase Hrd1. Journal of Biological Chemistry, 2017, 292, 9104-9116.	1.6	31
34	A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates. Molecular Biology of the Cell, 2018, 29, 1021-1030.	0.9	31
35	Chemoproteomics-Enabled Covalent Ligand Screening Reveals a Thioredoxin-Caspase 3 Interaction Disruptor That Impairs Breast Cancer Pathogenicity. ACS Chemical Biology, 2017, 12, 2522-2528.	1.6	27
36	Diversity through equity and inclusion: The responsibility belongs to all of us. Molecular Biology of the Cell, 2020, 31, 2757-2760.	0.9	27

JAMES A OLZMANN

#	Article	IF	CITATIONS
37	Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation. Molecular Biology of the Cell, 2017, 28, 270-284.	0.9	25
38	The Lipid Droplet Knowledge Portal: A resource for systematic analyses of lipid droplet biology. Developmental Cell, 2022, 57, 387-397.e4.	3.1	22
39	Making the cut: intramembrane cleavage by a rhomboid protease promotes ERAD. Nature Structural and Molecular Biology, 2012, 19, 979-981.	3.6	20
40	A Tense Situation: Maintaining ER Homeostasis during Lipid Droplet Budding. Developmental Cell, 2019, 50, 1-2.	3.1	19
41	Getting a handle on lipid droplets: Insights into ER–lipid droplet tethering. Journal of Cell Biology, 2019, 218, 1089-1091.	2.3	14
42	Identification of Lipid Droplet Proteomes by Proximity Labeling Proteomics Using APEX2. Methods in Molecular Biology, 2019, 2008, 57-72.	0.4	10
43	Ending on a sour note: Lipids orchestrate ferroptosis in cancer. Cell Metabolism, 2021, 33, 1507-1509.	7.2	9
44	A Polyubiquitin Chain Reaction: Parkin Recruitment to Damaged Mitochondria. PLoS Genetics, 2015, 11, e1004952.	1.5	8
45	Optimized protocol for the identification of lipid droplet proteomes using proximity labeling proteomics in cultured human cells. STAR Protocols, 2021, 2, 100579.	0.5	7
46	Organelle Biogenesis: ER Shape Influences Lipid Droplet Nucleation. Current Biology, 2020, 30, R770-R773.	1.8	5
47	Going through a phase. Nature Chemical Biology, 2020, 16, 111-112.	3.9	2
48	End of the road: from the ER to the proteasome. Nature Reviews Molecular Cell Biology, 2022, 23, 520-520.	16.1	1
49	A Proteomic Map to Navigate Subcellular Reorganization in Fatty Liver Disease. Developmental Cell, 2018, 47, 139-141.	3.1	0
50	Lipid Droplet Proteome Dynamics and Lipotoxicity. FASEB Journal, 2021, 35, .	0.2	0