Xin-Gui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1317197/publications.pdf

Version: 2024-02-01

41344 58581 7,463 135 49 82 citations h-index g-index papers 136 136 136 6197 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations. Chemical Reviews, 2002, 102, 2925-3030.	47.7	629
2	Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 2001, 47, 125-139.	4.1	457
3	Powerful Reactive Sorption of Silver(I) and Mercury(II) onto Poly(<i>o</i> -phenylenediamine) Microparticles. Langmuir, 2009, 25, 1675-1684.	3.5	245
4	Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors. Nano Letters, 2011, 11, 954-959.	9.1	215
5	Rapid and Effective Adsorption of Lead Ions on Fine Poly(phenylenediamine) Microparticles. Chemistry - A European Journal, 2006, 12, 4341-4350.	3.3	193
6	Synthesis and Heavy-Metal-Ion Sorption of Pure Sulfophenylenediamine Copolymer Nanoparticles with Intrinsic Conductivity and Stability. Chemistry - A European Journal, 2007, 13, 6009-6018.	3.3	180
7	Ultrasensitive Pb(II) Potentiometric Sensor Based on Copolyaniline Nanoparticles in a Plasticizer-Free Membrane with a Long Lifetime. Analytical Chemistry, 2012, 84, 134-140.	6.5	149
8	Facile Synthesis and Highly Reactive Silver Ion Adsorption of Novel Microparticles of Sulfodiphenylamine and Diaminonaphthalene Copolymers. Chemistry of Materials, 2005, 17, 5411-5419.	6.7	138
9	Thermal degradation of cellulose and cellulose esters. Journal of Applied Polymer Science, 1998, 68, 293-304.	2.6	129
10	Strong Adsorbability of Mercury Ions on Aniline/Sulfoanisidine Copolymer Nanosorbents. Chemistry - A European Journal, 2009, 15, 4573-4581.	3.3	124
11	Efficient and Scalable Synthesis of Pure Polypyrrole Nanoparticles Applicable for Advanced Nanocomposites and Carbon Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 19244-19255.	3.1	122
12	Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate. Journal of Materials Chemistry, 2012, 22, 17685.	6.7	115
13	Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer, 2001, 42, 6859-6869.	3.8	106
14	Synthesis, Film-Forming, and Electronic Properties ofo-Phenylenediamine Copolymers Displaying An Uncommon Tricolor. Macromolecules, 2007, 40, 1489-1496.	4.8	104
15	Facile Optimal Synthesis of Inherently Electroconductive Polythiophene Nanoparticles. Chemistry - A European Journal, 2009, 15, 6446-6455.	3.3	104
16	Facile synthesis of poly(1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization. Acta Materialia, 2004, 52, 5363-5374.	7.9	101
17	Selfâ€Stabilized Nanoparticles of Intrinsically Conducting Copolymers from 5â€Sulfonicâ€2â€Anisidine. Small, 2008, 4, 1201-1209.	10.0	101
18	Interfacial Synthesis and Widely Controllable Conductivity of Polythiophene Microparticles. Journal of Physical Chemistry B, 2009, 113, 9718-9727.	2.6	96

#	Article	IF	Citations
19	Ultra-sensitive chemosensors for Fe(iii) and explosives based on highly fluorescent oligofluoranthene. Chemical Science, 2013, 4, 1970.	7.4	94
20	Redox Sorption and Recovery of Silver Ions as Silver Nanocrystals on Poly(anilineâ€ <i>co</i> â€5â€sulfoâ€2â€anisidine) Nanosorbents. Chemistry - A European Journal, 2010, 16, 10113-10123.	3 . 3	92
21	Facile Highâ€Yield Synthesis of Polyaniline Nanosticks with Intrinsic Stability and Electrical Conductivity. Chemistry - A European Journal, 2008, 14, 10309-10317.	3.3	91
22	Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores. Talanta, 2011, 85, 1575-1584.	5 . 5	91
23	Facile Synthesis of Water-Dispersible Conducting Polymer Nanospheres. ACS Nano, 2010, 4, 5193-5202.	14.6	90
24	Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer. Analyst, The, 2013, 138, 3820.	3.5	90
25	Synthesis and characterization of o-phenylenediamine and xylidine copolymers. Polymer, 2001, 42, 4099-4107.	3.8	88
26	Oxidative polymerization of o-phenylenediamine and pyrimidylamine. Polymer Degradation and Stability, 2000, 71, 31-38.	5.8	85
27	Oligotriphenylene Nanofiber Sensors for Detection of Nitroâ€Based Explosives. Advanced Functional Materials, 2012, 22, 726-735.	14.9	85
28	Thermal decomposition kinetics of thermotropic poly(oxybenzoate-co-oxynaphthoate) Vectra copolyester. Polymer Degradation and Stability, 1999, 64, 81-90.	5.8	80
29	Sulfonated Polyaniline Nanostructures Synthesized via Rapid Initiated Copolymerization with Controllable Morphology, Size, and Electrical Properties. Macromolecules, 2012, 45, 1570-1579.	4.8	80
30	Simple Efficient Synthesis of Strongly Luminescent Polypyrene with Intrinsic Conductivity and High Carbon Yield by Chemical Oxidative Polymerization of Pyrene. Chemistry - A European Journal, 2010, 16, 4803-4813.	3.3	79
31	Facile Synthesis of Polysulfoaminoanthraquinone Nanosorbents for Rapid Removal and Ultrasensitive Fluorescent Detection of Heavy Metal Ions. Journal of Physical Chemistry C, 2011, 115, 5301-5315.	3.1	74
32	Kinetics of thermal degradation of thermotropic poly(p-oxybenzoate-co-ethylene terephthalate) by single heating rate methods. Polymer International, 1998, 46, 289-297.	3.1	72
33	Synthesis of Semiconducting Polymer Microparticles as Solid Ionophore with Abundant Complexing Sites for Long-Life Pb(II) Sensors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22096-22107.	8.0	70
34	Lead(II) ion-selective electrode based on polyaminoanthraquinone particles with intrinsic conductivity. Talanta, 2009, 78, 498-505.	5 . 5	69
35	Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers, 2008, 89, 497-505.	2.4	68
36	Preparation and characterization of poly(p-phenylenediamine-co-xylidine). Journal of Applied Polymer Science, 2001, 81, 3107-3116.	2.6	67

#	Article	IF	Citations
37	Thermal decomposition of cellulose ethers. Journal of Applied Polymer Science, 1999, 73, 2927-2936.	2.6	66
38	Thermal degradation of Kevlar fiber by high-resolution thermogravimetry. Journal of Applied Polymer Science, 1999, 71, 565-571.	2.6	65
39	Oxidative copolymers of aniline witho-toluidine: Their structure and thermal properties. Journal of Applied Polymer Science, 2001, 81, 1838-1847.	2.6	62
40	Efficient multicyclic sorption and desorption of lead ions on facilely prepared poly(m-phenylenediamine) particles with extremely strong chemoresistance. Journal of Colloid and Interface Science, 2007, 313, 72-79.	9.4	62
41	Preparation and characterization of soluble terpolymers fromm-phenylenediamine, o-anisidine, and 2,3-xylidine. Journal of Polymer Science Part A, 2001, 39, 3989-4000.	2.3	61
42	Synthesis of CuO Perpendicularly Cross-Bedded Microstructure via a Precursor-Based Route. Crystal Growth and Design, 2009, 9, 4108-4115.	3.0	59
43	Longan Shell as Novel Biomacromolecular Sorbent for Highly Selective Removal of Lead and Mercury Ions. Journal of Physical Chemistry B, 2010, 114, 3534-3542.	2.6	58
44	The preparation of polyaniline waterborne latex nanoparticles and their films with anti-corrosivity and semi-conductivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 248, 111-120.	4.7	56
45	Productive Synthesis and Properties of Polydiaminoanthraquinone and Its Pure Self‣tabilized Nanoparticles with Widely Adjustable Electroconductivity. Chemistry - A European Journal, 2007, 13, 8884-8896.	3.3	56
46	Efficient Synthesis of Intrinsically Conducting Polypyrrole Nanoparticles Containing Hydroxy Sulfoaniline as Key Self-Stabilized Units. Journal of Physical Chemistry C, 2009, 113, 21586-21595.	3.1	55
47	Highly dispersible polypyrrole nanospheres for advanced nanocomposite ultrafiltration membranes. Materials Horizons, 2014, 1, 58-64.	12.2	55
48	Facile Synthesis and Intrinsic Conductivity of Novel Pyrrole Copolymer Nanoparticles with Inherent Self-Stability. Journal of Physical Chemistry B, 2007, 111, 5829-5836.	2.6	54
49	Synthesis and properties of a functional copolymer from N-ethylaniline and aniline by an emulsion polymerization. Polymer, 2005, 46, 1523-1533.	3.8	51
50	Combinatorial Screening of Potentiometric Pb(II) Sensors from Polysulfoaminoanthraquinone Solid lonophore. ACS Combinatorial Science, 2014, 16, 128-138.	3.8	50
51	Synthesis and characterization of pyrrole and anisidine copolymers. Polymer, 2001, 42, 6095-6103.	3.8	49
52	Resultful synthesis of polyvinyltetrazole from polyacrylonitrile. Reactive and Functional Polymers, 2004, 59, 53-61.	4.1	48
53	Facile Synthesis and Optimization of Conductive Copolymer Nanoparticles and Nanocomposite Films from Aniline with Sulfodiphenylamine. Chemistry - A European Journal, 2006, 12, 1349-1359.	3.3	48
54	Thermal degradation of bisphenol A polycarbonate by highâ€resolution thermogravimetry. Polymer International, 1999, 48, 387-391.	3.1	47

#	Article	IF	CITATIONS
55	Optimization of Polymerization Conditions of Furan with Aniline for Variable Conducting Polymers. ACS Combinatorial Science, 2006, 8, 670-678.	3.3	44
56	Carbon nanotube/polyaniline nanofiber ultrafiltration membranes. Journal of Materials Chemistry A, 2013, 1, 15390.	10.3	44
57	Synthesis and characterization of pyrrole and m-toluidine copolymers. Synthetic Metals, 2001, 123, 435-441.	3.9	43
58	Synthesis and characterization of liquid crystalline polymers fromp-hydroxybenzoic acid, poly(ethylene terephthalate), and third monomers. Journal of Applied Polymer Science, 1997, 66, 2129-2138.	2.6	42
59	Effect of polymerization conditions ono-phenylenediamine ando-phenetidine oxidative copolymers. Polymer International, 2005, 54, 70-82.	3.1	41
60	A soluble ladder copolymer from m-phenylenediamine and ethoxyaniline. Polymer, 2003, 44, 5579-5595.	3.8	39
61	Multilayer ultrathin-film composite membranes for oxygen enrichment. Journal of Applied Polymer Science, 1997, 66, 2139-2147.	2.6	38
62	Thermal decomposition kinetics of thermotropic copolyesters made fromtrans-p-hydroxycinnamic acid andp-hydroxybenzoic acid. Journal of Applied Polymer Science, 2004, 91, 445-454.	2.6	38
63	Preparation and identification of a soluble copolymer from pyrrole ando-toluidine. Journal of Applied Polymer Science, 2001, 82, 510-518.	2.6	36
64	Facile Synthesis of Processible Aminoquinoline/Phenetidine Copolymers and Their Pure Semiconducting Nanoparticles. Macromolecules, 2005, 38, 4211-4219.	4.8	36
65	Synthesis and Characterization of Poly(aniline-co-xylidine)s. Polymer Journal, 2000, 32, 348-353.	2.7	35
66	Effect of molecular weight on crystallization and melting of poly(trimethylene terephthalate). 1: Isothermal and dynamic crystallization. Polymer Engineering and Science, 2001, 41, 1655-1664.	3.1	35
67	Synthesis and properties of processible copolymer microparticles from chloroanilines and aniline. Journal of Materials Chemistry, 2005, 15, 1343.	6.7	35
68	High-resolution thermogravimetry of polyphenylene sulfide film under four atmospheres. Journal of Applied Polymer Science, 2002, 83, 2053-2059.	2.6	34
69	Facile synthesis of highly soluble copolymers and sub-micrometer particles from ethylaniline with anisidine and sulfoanisidine. Polymer, 2004, 45, 101-115.	3.8	33
70	Synthesis and Multifunctionality of Self-Stabilized Poly(aminoanthraquinone) Nanofibrils. Journal of Physical Chemistry C, 2011, 115, 9486-9497.	3.1	31
71	Thermal degradation of bisphenol A polysulfone by high-resolution thermogravimetry. Reactive and Functional Polymers, 1999, 42, 59-64.	4.1	30
72	Oxidative copolymerization of 2-pyridylamine and aniline. Journal of Polymer Science Part A, 2000, 38, 4407-4418.	2.3	30

#	Article	IF	Citations
73	Effective role of eco-friendly acetyl tributyl citrate in large-scale catalyst-free synthesis of waterborne polyurethanes without volatile organic compounds. Journal of Cleaner Production, 2019, 237, 117543.	9.3	30
74	Synthesis and nitrosation of processible copolymers from pyrrole and ethylaniline. Polymer, 2004, 45, 385-398.	3.8	28
75	Kinetics of thermal degradation of liquid-crystalline aromatic polymers. Angewandte Makromolekulare Chemie, 1998, 256, 9-19.	0.2	27
76	Soluble copolymers via oxidative polymerization of pyrimidylamine and anisidine. Polymer, 2001, 42, 3427-3435.	3.8	27
77	High-resolution thermogravimetric analysis of poly(trimethylene terephthalate) with different molecular weights. Polymer Testing, 2001, 20, 491-502.	4.8	27
78	Highly cost-efficient sorption and desorption of mercury ions onto regenerable poly(m-phenylenediamine) microspheres with many active groups. Chemical Engineering Journal, 2020, 391, 123515.	12.7	27
79	Purely Organic Room-Temperature Phosphorescence Endowing Fast Intersystem Crossing from Through-Space Spin–Orbit Coupling. Jacs Au, 2021, 1, 1694-1699.	7.9	27
80	UVâ€activated hydrosilylation: a facile approach for synthesis of hyperbranched polycarbosilanes. Applied Organometallic Chemistry, 2009, 23, 277-282.	3.5	26
81	Interfacial chemical oxidative synthesis of multifunctional polyfluoranthene. Chemical Science, 2015, 6, 2087-2101.	7.4	26
82	Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. Progress in Materials Science, 2022, 125, 100885.	32.8	26
83	Preparation and solubility of a partial ladder copolymer from p-phenylenediamine and o-phenetidine. Polymer, 2003, 44, 6273-6285.	3.8	25
84	Simple Synthesis of Aminoquinoline/Ethylaniline Copolymer Semiconducting Nanoparticles. Chemistry - A European Journal, 2005, 11, 4247-4256.	3.3	25
85	Interfacial Synthesis and Functionality of Selfâ€Stabilized Polydiaminonaphthalene Nanoparticles. Chemistry - A European Journal, 2012, 18, 9877-9885.	3.3	25
86	Structure and properties of liquid crystalline naphthalenediol copolyesters. Journal of Applied Polymer Science, 1994, 51, 1913-1921.	2.6	24
87	Thermogravimetry of Thermoplastic Polyimide Powders under Four Different Atmospheres. Macromolecular Materials and Engineering, 2001, 286, 421-428.	3.6	24
88	High-resolution thermogravimetry of polyethersulfone chips in four atmospheres. Journal of Applied Polymer Science, 2003, 90, 3631-3637.	2.6	24
89	Cost-Effective Sustainable Synthesis of High-Performance High-Molecular-Weight Poly(trimethylene) Tj ETQq1 1 Engineering, 2017, 5, 2181-2195.	0.784314 6.7	rgBT /Overlo
90	High-resolution thermogravimetry of cellulose esters. Journal of Applied Polymer Science, 1999, 71, 573-578.	2.6	23

#	Article	IF	Citations
91	Synthesis and properties of processable conducting copolymers fromN-ethylaniline with aniline. Journal of Polymer Science Part A, 2004, 42, 6109-6124.	2.3	23
92	Dynamic Reversible Adsorption and Desorption of Lead Ions Through a Packed Column of Poly(m-phenylenediamine) Spheroids. Soft Materials, 2010, 8, 149-163.	1.7	22
93	Actual air separation through poly(aniline-co-toluidine)/ethylcellulose blend thin-film composite membranes. Journal of Applied Polymer Science, 2000, 75, 458-463.	2.6	21
94	Synthesis and characterization of a soluble terpolymer from pyridylamine, aniline and xylidine. Polymer Degradation and Stability, 2001, 71, 333-341.	5.8	21
95	Electrocopolymerization of meta-phenylenediamine and ortho-phenetidine. Reactive and Functional Polymers, 2005, 62, 261-270.	4.1	20
96	Thermal decomposition kinetics of thermotropic poly(oxybenzoate-co-trimethylene terephthalate). Journal of Applied Polymer Science, 2000, 78, 2025-2036.	2.6	19
97	Chemical Response of Nanocomposite Membranes of Electroactive Polydiaminonaphthalene Nanoparticles to Heavy Metal Ions. Journal of Physical Chemistry C, 2014, 118, 11990-11999.	3.1	19
98	Scalable Synthesis of Poly(ester- <i>co</i> -ether) Elastomers via Direct Catalytic Esterification of Terephthalic Acid with Highly Active Zr–Mg Catalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 9074-9085.	6.7	19
99	Facile synthesis and characterization of the copolymers and their pure nanoparticles from aniline with 4-sulfonic diphenylamine. Journal of Polymer Science Part A, 2004, 42, 3380-3394.	2.3	18
100	Cleaner synthesis and systematical characterization of sustainable poly(isosorbide-co-ethylene) Tj ETQq0 0 0 rgB 483-497.	BT /Overloc 9.3	tk 10 Tf 50 38 18
101	Development of clean performance-tunable waterborne polyurethane using acetyl tributyl citrate for transferable holographic films. Journal of Cleaner Production, 2021, 279, 123496.	9.3	18
102	Synthesis of Electroconducting Narrowly Distributed Nanoparticles and Nanocomposite Films of Orthanilic Acid/Aniline Copolymers. ACS Combinatorial Science, 2006, 8, 174-183.	3.3	17
103	High-resolution thermogravimetry of poly(2,6-dimethyl-1,4-phenylene oxide). Journal of Applied Polymer Science, 1999, 71, 1887-1892.	2.6	16
104	Thermogravimetric kinetics of thermotropic copolyesters containingp-oxybenzoate unit by multiple heating-rate methods. Journal of Applied Polymer Science, 1999, 74, 2016-2028.	2.6	16
105	THERMAL DEGRADATION KINETICS OF THERMOTROPIC COPOLY (P-OXYBENZOATE-ETHYLENE) Tj ETQq1 1 0.784 Science - Pure and Applied Chemistry, 1999, 36, 859-878.	4314 rgBT 2.2	/Overlock 10 16
106	Synthesis of a soluble pyrrole copolymer with phenetidine. Journal of Polymer Science Part A, 2004, 42, 2073-2092.	2.3	16
107	Synthesis and air separation of soluble terpolymers from Aniline, Toluidine, and Xylidine. Journal of Applied Polymer Science, 2001, 82, 790-798.	2.6	15
108	Template-free synthesis of tunable hollow microspheres of aniline and aminocarbazole copolymers emitting colorful fluorescence for ultrasensitive sensors. Chemical Engineering Journal, 2019, 357, 776-786.	12.7	15

#	Article	IF	CITATIONS
109	Investigations on the influence of energy source on time-dependent hormesis: A case study of sulfadoxine to Aliivibrio fischeri in different cultivation systems. Science of the Total Environment, 2021, 775, 145877.	8.0	15
110	An electrochromic film device to teach polymer electrochemical physics. American Journal of Physics, 2007, 75, 839-843.	0.7	14
111	Efficient synthesis of oligofluoranthene nanorods with tunable functionalities. Chemical Science, 2015, 6, 7190-7200.	7.4	14
112	High-resolution thermogravimetry of liquid crystalline copoly(p-oxybenzoate-ethylene) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 50 2.6) 622 Td (te
113	MOLECULAR CHAIN STRUCTURE OF THERMOTROPICp-OXYBENZOATE/ETHYLENE TEREPHTHALATE/VANILLATE OR PHENYLENE TEREPHTHALATE TERPOLYMERS. Polymer-Plastics Technology and Engineering, 2000, 39, 317-331.	1.9	13
114	Title is missing!. Angewandte Makromolekulare Chemie, 1997, 249, 183-198.	0.2	12
115	Facile synthesis of oxidative copolymers from aminoquinoline and anisidine. Polymer, 2004, 45, 4693-4704.	3.8	12
116	Synthesis of poly $(1,5$ -diaminonaphthalene) microparticles with abundant amino and imino groups as strong adsorbers for heavy metal ions. Mikrochimica Acta, 2019, 186, 208.	5.0	12
117	Title is missing!. Angewandte Makromolekulare Chemie, 1997, 249, 163-181.	0.2	11
118	Structure and high-resolution thermogravimetry of liquid-crystalline copoly(p-oxybenzoate-ethylene) Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf
119	Highly emissive phenylene-expanded [5]radialene. Chemical Communications, 2020, 56, 3911-3914.	4.1	11
120	Thermal degradation kinetics of thermotropic poly(p-oxybenzoate-co-p,p?-biphenylene terephthalate) fiber. Journal of Applied Polymer Science, 1999, 71, 1923-1931.	2.6	10
121	Titrimetric analysis of total mercury ions including mercury(I) ions. Monatshefte $F\tilde{A}^{1}/4$ r Chemie, 2008, 139, 1157-1162.	1.8	9
122	Actual air separation across multilayer composite membranes. Journal of Applied Polymer Science, 2000, 77, 2396-2403.	2.6	8
123	High-resolution thermogravimetric kinetics of liquid crystalline poly(p-oxybenzoate-co-ethylene) Tj ETQq $1\ 1\ 0.784$	4314 rgBT 4.8	/Qverlock 1
124	Structure of liquid crystalline copolyesters from two acetoxybenzoic acids and polyethylene terephthalate. Journal of Applied Polymer Science, 1999, 73, 2921-2925.	2.6	7
125	Recent progress on adsorption and membrane separation for organic contaminants on multi-dimensional graphene. Materials Today Chemistry, 2021, 22, 100603.	3.5	7
126	Hormetic dose-response of halogenated organic pollutants on Microcystis aeruginosa: Joint toxic action and mechanism. Science of the Total Environment, 2022, 829, 154581.	8.0	7

Xın-Gui Li

#	Article	IF	CITATION
127	High-resolution thermogravimetry of poly(phenylene sulfide) film under four atmospheres. Journal of Applied Polymer Science, 2002, 83, 1940-1946.	2.6	6
128	Facile synthesis of semi-conducting particles of oxidative melamine/toluidine copolymers with solvatochromism. Reactive and Functional Polymers, 2005, 62, 285-294.	4.1	6
129	Nitrogen-Bearing Organic Compounds as Carriers for Lead Ion-Selective Electrodes with Excellent Response. Chinese Journal of Analytical Chemistry, 2008, 36, 1735-1741.	1.7	6
130	High-resolution thermogravimetry of poly(4-methyl-1-pentene). Journal of Applied Polymer Science, 1999, 71, 2201-2207.	2.6	5
131	Structure and thermal degradation of poly(N-phenyl acrylamide) and poly(N-phenyl methacrylamide). Journal of Applied Polymer Science, 2003, 88, 1065-1071.	2.6	5
132	Synthesis and Sublimation Kinetics of a Highly Volatile Asymmetric Iron(II) Amidinate. European Journal of Inorganic Chemistry, 2007, 2007, 1135-1142.	2.0	3
133	Facile preparation and characterization of copolymer nanoparticles from pyrrole and aniline-2-sulfonic acid. Mikrochimica Acta, 2010, 171, 341-347.	5.0	3
134	Preparation and characterization of the copolymer containing N-pyridyl bi (methacryl) imide unit. Journal of Applied Polymer Science, 2002, 86, 1673-1678.	2.6	2
135	Oxidative copolymerization between toluidine and vinyl acetate. Journal of Applied Polymer Science, 2006, 100, 3562-3573.	2.6	0