
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1316795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 2014, 4, 111-116.	8.1	1,572
2	Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 2014, 4, 222-227.	8.1	1,115
3	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	13.7	702
4	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	8.1	596
5	Increased frequency of extreme LaÂNiña events under greenhouse warming. Nature Climate Change, 2015, 5, 132-137.	8.1	479
6	Pantropical climate interactions. Science, 2019, 363, .	6.0	419
7	Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 2018, 564, 201-206.	13.7	394
8	The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Reviews of Geophysics, 2017, 55, 1079-1129.	9.0	337
9	Climate impacts of the El Niño–Southern Oscillation on South America. Nature Reviews Earth & Environment, 2020, 1, 215-231.	12.2	318
10	Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 2014, 510, 254-258.	13.7	296
11	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	12.2	197
12	Continued increase of extreme ElÂNiño frequency long after 1.5 °C warming stabilization. Nature Climate Change, 2017, 7, 568-572.	8.1	174
13	Cold Tongue and Warm Pool ENSO Events in CMIP5: Mean State and Future Projections. Journal of Climate, 2014, 27, 2861-2885.	1.2	147
14	Response of El Niño sea surface temperature variability to greenhouse warming. Nature Climate Change, 2014, 4, 786-790.	8.1	147
15	Projected Changes to the Southern Hemisphere Ocean and Sea Ice in the IPCC AR4 Climate Models. Journal of Climate, 2009, 22, 3047-3078.	1.2	144
16	Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 2013, 504, 126-130.	13.7	116
17	Interannual Rainfall Extremes over Southwest Western Australia Linked to Indian Ocean Climate Variability. Journal of Climate, 2006, 19, 1948-1969.	1.2	110
18	Pacificâ€ŧoâ€Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO. Journal of Geophysical Research: Oceans, 2014, 119, 1365-1382.	1.0	105

#	Article	IF	CITATIONS
19	Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Scientific Reports, 2020, 10, 11500.	1.6	94
20	Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophysical Research Letters, 2013, 40, 749-754.	1.5	90
21	Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nature Climate Change, 2022, 12, 228-231.	8.1	85
22	Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nature Climate Change, 2021, 11, 27-32.	8.1	79
23	Impact of Indo-Pacific Feedback Interactions on ENSO Dynamics Diagnosed Using Ensemble Climate Simulations. Journal of Climate, 2012, 25, 7743-7763.	1.2	65
24	Butterfly effect and a self-modulating El Niño response to global warming. Nature, 2020, 585, 68-73.	13.7	63
25	Future changes to the Indonesian Throughflow and Pacific circulation: The differing role of wind and deep circulation changes. Geophysical Research Letters, 2016, 43, 1669-1678.	1.5	56
26	Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans. Climate Dynamics, 2017, 48, 2173-2190.	1.7	56
27	Impact of the El Niño–Southern Oscillation, Indian Ocean Dipole, and Southern Annular Mode on Daily to Subdaily Rainfall Characteristics in East Australia. Monthly Weather Review, 2012, 140, 1665-1682.	0.5	54
28	Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C warming. Nature Communications, 2018, 9, 1419.	5.8	51
29	Interannual Tasmanian Rainfall Variability Associated with Large-Scale Climate Modes. Journal of Climate, 2009, 22, 4383-4397.	1.2	48
30	Genesis of Indian Ocean Mixed Layer Temperature Anomalies: A Heat Budget Analysis. Journal of Climate, 2010, 23, 5375-5403.	1.2	48
31	Dynamics and Predictability of El Niño–Southern Oscillation: An Australian Perspective on Progress and Challenges. Bulletin of the American Meteorological Society, 2019, 100, 403-420.	1.7	46
32	Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias. Climate Dynamics, 2018, 50, 1471-1484.	1.7	41
33	A Unique Feature of the 2019 Extreme Positive Indian Ocean Dipole Event. Geophysical Research Letters, 2020, 47, e2020GL088615.	1.5	40
34	Antarctic Intermediate Water Circulation and Variability in a Coupled Climate Model. Journal of Physical Oceanography, 2004, 34, 2160-2179.	0.7	37
35	The Role of the Indonesian Throughflow on ENSO Dynamics in a Coupled Climate Model. Journal of Climate, 2011, 24, 585-601.	1.2	34
36	Assessing the Impact of Model Biases on the Projected Increase in Frequency of Extreme Positive Indian Ocean Dipole Events. Journal of Climate, 2017, 30, 2757-2767.	1.2	30

#	Article	IF	CITATIONS
37	Indian Ocean warming modulates global atmospheric circulation trends. Climate Dynamics, 2020, 55, 2053-2073.	1.7	28
38	Definition of Extreme El Niño and Its Impact on Projected Increase in Extreme El Niño Frequency. Geophysical Research Letters, 2017, 44, 11,184.	1.5	26
39	Multidecadal ENSO Amplitude Variability in a 1000-yr Simulation of a Coupled Global Climate Model: Implications for Observed ENSO Variability. Journal of Climate, 2013, 26, 9399-9407.	1.2	25
40	Extreme swings of the South Pacific Convergence Zone and the different types of El Niño events. Geophysical Research Letters, 2014, 41, 4695-4703.	1.5	25
41	Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Scientific Reports, 2019, 9, 7364.	1.6	24
42	Future Southern Ocean warming linked to projected ENSO variability. Nature Climate Change, 2022, 12, 649-654.	8.1	23
43	Circumpolar Deep Water Circulation and Variability in a Coupled Climate Model. Journal of Physical Oceanography, 2006, 36, 1523-1552.	0.7	22
44	ENSOâ€driven interhemispheric Pacific mass transports. Journal of Geophysical Research: Oceans, 2014, 119, 6221-6237.	1.0	21
45	Indo-Pacific Climate Interactions in the Absence of an Indonesian Throughflow. Journal of Climate, 2015, 28, 5017-5029.	1.2	20
46	Nonlinear processes reinforce extreme Indian Ocean Dipole events. Scientific Reports, 2015, 5, 11697.	1.6	20
47	A surface layer variance heat budget for ENSO. Geophysical Research Letters, 2015, 42, 3529-3537.	1.5	19
48	Uncertainty in near-term global surface warming linked to tropical Pacific climate variability. Nature Communications, 2019, 10, 1990.	5.8	19
49	The Impact of Interacting Climate Modes on East Australian Precipitation Moisture Sources. Journal of Climate, 2022, 35, 3147-3159.	1.2	19
50	Stronger Increase in the Frequency of Extreme Convective than Extreme Warm El Niño Events under Greenhouse Warming. Journal of Climate, 2020, 33, 675-690.	1.2	18
51	CMIP5 Intermodel Relationships in the Baseline Southern Ocean Climate System and With Future Projections. Earth's Future, 2021, 9, e2020EF001873.	2.4	18
52	Contribution of tropical instability waves to ENSO irregularity. Climate Dynamics, 2019, 52, 1837-1855.	1.7	17
53	Ice–Atmosphere Feedbacks Dominate the Response of the Climate System to Drake Passage Closure. Journal of Climate, 2017, 30, 5775-5790.	1.2	15
54	Antarctic Bottom Water Variability in a Coupled Climate Model. Journal of Physical Oceanography, 2008, 38, 1870-1893.	0.7	14

#	Article	IF	CITATIONS
55	Distinctive role of ocean advection anomalies in the development of the extreme 2015–16 El Niño. Climate Dynamics, 2018, 51, 2191-2208.	1.7	14
56	Interhemispheric asymmetry in transient global warming: The role of Drake Passage. Geophysical Research Letters, 2013, 40, 1587-1593.	1.5	13
57	The 1970's shift in ENSO dynamics: A linear inverse model perspective. Geophysical Research Letters, 2013, 40, 1612-1617.	1.5	12
58	Indonesian Throughflow Variability and Linkage to ENSO and IOD in an Ensemble of CMIP5 Models. Journal of Climate, 2022, 35, 3161-3178.	1.2	10
59	MEETING SUMMARIES. Bulletin of the American Meteorological Society, 2015, 96, 1969-1972.	1.7	8
60	Simulated Thermocline Tilt Over the Tropical Indian Ocean and Its Influence on Future Sea Surface Temperature Variability. Geophysical Research Letters, 2021, 48, e2020GL091902.	1.5	8
61	Indian Ocean warming as key driver of long-term positive trend of Arctic Oscillation. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	8
62	Optimal forcing of ENSO either side of the 1970's climate shift and its implications for predictability. Climate Dynamics, 2015, 45, 47-65.	1.7	5
63	Improved Simulation of ENSO Variability Through Feedback From the Equatorial Atlantic in a Pacemaker Experiment. Geophysical Research Letters, 2022, 49, .	1.5	5
64	Multiyear Variability in the Tasman Sea and Impacts on Southern Hemisphere Climate in CMIP5 Models. Journal of Climate, 2017, 30, 4413-4427.	1.2	3
65	Indian Ocean warming during peak El Niño cools surrounding land masses. Climate Dynamics, 2018, 51, 2097-2112.	1.7	3
66	Understanding ENSO in a Changing Climate. Eos, 2019, 100, .	0.1	2
67	Phase Coherence Between Surrounding Oceans Enhances Precipitation Shortages in Northeast Brazil. Geophysical Research Letters, 2022, 49, .	1.5	2
68	Advancing Knowledge of ENSO in a Changing Climate. Eos, 2020, 101, .	0.1	1
69	Drought in store as El Ni�0. Ecos, 2014, , .	0.0	0
70	Learning from an Extreme El Niño. Eos, 2018, 99, .	0.1	0