Hongbin Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1316583/publications.pdf

Version: 2024-02-01

186265 276875 2,266 89 28 41 h-index citations g-index papers 98 98 98 2524 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effectiveness and Safety of Inelastic Versus Elastic Lumbosacral Orthoses on Low Back Pain Prevention in Healthy Nurses. Spine, 2022, 47, 656-665.	2.0	1
2	Characterize the microstructure change after tendon enthesis injury using synchrotron radiation $\hat{1}$ /4CT. Journal of Orthopaedic Research, 2022, 40, 2678-2687.	2.3	7
3	Engineering an enthesis-like graft for rotator cuff repair: An approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers. Bioactive Materials, 2022, 16, 451-471.	15.6	18
4	Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF- \hat{l}^2 signaling. ELife, 2022, 11, .	6.0	9
5	Treadmill running initiation times and boneâ€tendon interface repair in a murine rotator cuff repair model. Journal of Orthopaedic Research, 2021, 39, 2017-2027.	2.3	11
6	Treadmill exercise facilitated rotator cuff healing is coupled with regulating periphery neuropeptides expression in a murine model. Journal of Orthopaedic Research, 2021, 39, 680-692.	2.3	21
7	Sustained release of collagenâ€affinity SDFâ€1α from bookâ€shaped acellular fibrocartilage scaffold enhanced boneâ€tendon healing in a rabbit model. Journal of Orthopaedic Research, 2021, 39, 1331-1343.	2.3	7
8	Effect of book-shaped acellular tendon scaffold with bone marrow mesenchymal stem cells sheets on bone–tendon interface healing. Journal of Orthopaedic Translation, 2021, 26, 162-170.	3.9	19
9	A combinatorial method to visualize the neuronal network in the mouse spinal cord: combination of a modified Golgi-Cox method and synchrotron radiation micro-computed tomography. Histochemistry and Cell Biology, 2021, 155, 477-489.	1.7	6
10	Acceleration of Bone-Tendon Interface Healing by Low-Intensity Pulsed Ultrasound Is Mediated by Macrophages. Physical Therapy, 2021, 101, .	2.4	8
11	The Enhancement Effect of Acetylcholine and Pyridostigmine on Bone-Tendon Interface Healing in a Murine Rotator Cuff Model. American Journal of Sports Medicine, 2021, 49, 909-917.	4.2	6
12	Cell-Free Book-Shaped Decellularized Tendon Matrix Graft Capable of Controlled Release of BMP-12 to Improve Tendon Healing in a Rat Model. American Journal of Sports Medicine, 2021, 49, 1333-1347.	4.2	10
13	A biomechanical comparison of a mesh suture to a polyblend suture in a porcine tendon model. Annals of Translational Medicine, 2021, 9, 450-450.	1.7	4
14	Adipose-Derived Stromal Cell-Sheets Sandwiched, Book-Shaped Acellular Dermal Matrix Capable of Sustained Release of Basic Fibroblast Growth Factor Promote Diabetic Wound Healing. Frontiers in Cell and Developmental Biology, 2021, 9, 646967.	3.7	11
15	Characterization of the distributions of collagen and PGs content in the decellularized book-shaped enthesis scaffolds by SR-FTIR. BMC Musculoskeletal Disorders, 2021, 22, 235.	1.9	6
16	Recombinant human bone morphogenetic protein-4 enhances tendon-to-bone attachment healing in a murine model of rotator cuff tear. Annals of Translational Medicine, 2021, 9, 565-565.	1.7	4
17	Effect of Exercise Intensity on the Healing of the Bone-Tendon Interface: A Mouse Rotator Cuff Injury Model Study. American Journal of Sports Medicine, 2021, 49, 2064-2073.	4.2	12
18	The Long Non-coding RNA NEAT1/miR-224-5p/IL-33 Axis Modulates Macrophage M2a Polarization and A1 Astrocyte Activation. Molecular Neurobiology, 2021, 58, 4506-4519.	4.0	14

#	Article	IF	CITATIONS
19	Calcitonin Gene-Related Peptide Influences Bone-Tendon Interface Healing Through Osteogenesis: Investigation in a Rabbit Partial Patellectomy Model. Orthopaedic Journal of Sports Medicine, 2021, 9, 232596712110039.	1.7	6
20	Microglia-Derived Exosomes Improve Spinal Cord Functional Recovery after Injury via Inhibiting Oxidative Stress and Promoting the Survival and Function of Endothelia Cells. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-16.	4.0	19
21	Bone Marrow Mesenchymal Stem Cell-Derived Exosome-Educated Macrophages Promote Functional Healing After Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2021, 15, 725573.	3.7	15
22	Exosomal OTULIN from M2 macrophages promotes the recovery of spinal cord injuries via stimulating Wnt/ \hat{l}^2 -catenin pathway-mediated vascular regeneration. Acta Biomaterialia, 2021, 136, 519-532.	8.3	41
23	Local delivery of USC-derived exosomes harboring ANGPTL3 enhances spinal cord functional recovery after injury by promoting angiogenesis. Stem Cell Research and Therapy, 2021, 12, 20.	5.5	54
24	Early treadmill running delays rotator cuff healing via Neuropeptide Y mediated inactivation of the Wnt/ \hat{l}^2 -catenin signaling. Journal of Orthopaedic Translation, 2021, 30, 103-111.	3.9	16
25	Microglia-Derived Exosomal microRNA-151-3p Enhances Functional Healing After Spinal Cord Injury by Attenuating Neuronal Apoptosis via Regulating the p53/p21/CDK1 Signaling Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 783017.	3.7	21
26	Treatment of chronic lateral ankle instability by double-band anatomical reconstruction of the anterior talofibular ligament's fibular enthesis Journal of Central South University (Medical) Tj ETQq0 0 0 rgBT /	Ov er.l bck :	10 T f 50 457 ⁻
27	Isolation and Characterization of Multipotent Canine Urine-Derived Stem Cells. Stem Cells International, 2020, 2020, 1-12.	2.5	5
28	3D-Printed Extracellular Matrix/Polyethylene Glycol Diacrylate Hydrogel Incorporating the Anti-inflammatory Phytomolecule Honokiol for Regeneration of Osteochondral Defects. American Journal of Sports Medicine, 2020, 48, 2808-2818.	4.2	59
29	Periosteum progenitors could stimulate bone regeneration in aged murine bone defect model. Journal of Cellular and Molecular Medicine, 2020, 24, 12199-12210.	3.6	22
30	Structure and ingredient-based biomimetic scaffolds combining with autologous bone marrow-derived mesenchymal stem cell sheets for bone-tendon healing. Biomaterials, 2020, 241, 119837.	11.4	48
31	Comparison of bone surface and trough fixation on bone–tendon healing in a rabbit patella–patellar tendon injury model. Journal of Orthopaedic Translation, 2020, 21, 49-56.	3.9	7
32	Functional decellularized fibrocartilaginous matrix graft for rotator cuff enthesis regeneration: A novel technique to avoid in-vitro loading of cells. Biomaterials, 2020, 250, 119996.	11.4	39
33	SRÎ $\frac{1}{4}$ CT Reveals 3D Microstructural Alterations of the Vascular and Neuronal Network in a Rat Model of Chronic Compressive Thoracic Spinal Cord Injury. , 2020, 11 , 603.		11
34	Designing a novel vacuum aspiration system to decellularize large-size enthesis with preservation of physicochemical and biological properties. Annals of Translational Medicine, 2020, 8, 1364.	1.7	1
35	Designing a novel vacuum aspiration system to decellularize large-size enthesis with preservation of physicochemical and biological properties. Annals of Translational Medicine, 2020, 8, 1364-1364.	1.7	9
36	Tendon Healing in Bone Tunnel after Human Anterior Cruciate Ligament Reconstruction: A Systematic Review of Histological Results. Journal of Knee Surgery, 2019, 32, 454-462.	1.6	34

#	Article	IF	Citations
37	The protective effect of microRNA-21 in neurons after spinal cord injury. Spinal Cord, 2019, 57, 141-149.	1.9	39
38	Rapid Detection of Mycoplasma-Infected Cells by an ssDNA Aptamer Probe. ACS Sensors, 2019, 4, 2028-2038.	7.8	15
39	UTX/KDM6A Deletion Promotes Recovery of Spinal Cord Injury by Epigenetically Regulating Vascular Regeneration. Molecular Therapy, 2019, 27, 2134-2146.	8.2	50
40	Autologous Freeze-Dried, Platelet-Rich Plasma Carrying Icariin Enhances Bone-Tendon Healing in a Rabbit Model. American Journal of Sports Medicine, 2019, 47, 1964-1974.	4.2	19
41	Effect of Low-Intensity Pulsed Ultrasound After Autologous Adipose-Derived Stromal Cell Transplantation for Bone-Tendon Healing in a Rabbit Model. American Journal of Sports Medicine, 2019, 47, 942-953.	4.2	28
42	Comparative Evaluation of the Bookâ€Type Acellular Bone Scaffold and Fibrocartilage Scaffold for Boneâ€Tendon Healing. Journal of Orthopaedic Research, 2019, 37, 1709-1722.	2.3	13
43	ÂBookâ€shaped decellularized tendon matrix scaffold combined with bone marrow mesenchymal stem cellsâ€sheets for repair of achilles tendon defect in rabbit. Journal of Orthopaedic Research, 2019, 37, 887-897.	2.3	31
44	CTGF induces tenogenic differentiation and proliferation of adiposeâ€derived stromal cells. Journal of Orthopaedic Research, 2019, 37, 574-582.	2.3	33
45	Unilateral Osteotomy of Lumbar Facet Joint Induces a Mouse Model of Lumbar Facet Joint Osteoarthritis. Spine, 2019, 44, E930-E938.	2.0	7
46	Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nature Communications, 2019, 10, 5643.	12.8	72
47	Tendon pathology in hypercholesterolaemia patients: Epidemiology, pathogenesisÂand management. Journal of Orthopaedic Translation, 2019, 16, 14-22.	3.9	21
48	Book-Shaped Acellular Fibrocartilage Scaffold with Cell-loading Capability and Chondrogenic Inducibility for Tissue-Engineered Fibrocartilage and Bone–Tendon Healing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2891-2907.	8.0	55
49	Synchrotron Radiation Imaging Reveals the Role of Estrogen in Promoting Angiogenesis After Acute Spinal Cord Injury in Rats. Spine, 2018, 43, 1241-1249.	2.0	18
50	Low-Intensity Pulsed Ultrasound Stimulation for Tendon-Bone Healing. American Journal of Physical Medicine and Rehabilitation, 2018, 97, 270-277.	1.4	14
51	Three-dimensional characterization of the microstructure in rabbit patella–patellar tendon interface using propagation phase-contrast synchrotron radiation microtomography. Journal of Synchrotron Radiation, 2018, 25, 1833-1840.	2.4	12
52	Ciliary parathyroid hormone signaling activates transforming growth factor- \hat{l}^2 to maintain intervertebral disc homeostasis during aging. Bone Research, 2018, 6, 21.	11.4	59
53	SR-FTIR as a tool for quantitative mapping of the content and distribution of extracellular matrix in decellularized book-shape bioscaffolds. BMC Musculoskeletal Disorders, 2018, 19, 220.	1.9	22
54	Anatomic reconstruction of anterior talofibular ligament with tibial tuberosity–patellar tendon autograft for chronic lateral ankle instability. Journal of Orthopaedic Surgery, 2018, 26, 230949901878087.	1.0	11

#	Article	IF	CITATIONS
55	Feasibility study for evaluating early lumbar facet joint degeneration using axial <i>T</i> ₁ i, <i>T</i> ₂ , and mapping in cartilage. Journal of Magnetic Resonance Imaging, 2017, 46, 468-475.	3.4	8
56	3D characterization of morphological changes in the intervertebral disc and endplate during aging: A propagation phase contrast synchrotron micro-tomography study. Scientific Reports, 2017, 7, 43094.	3.3	19
57	Nondestructive imaging of the internal microstructure of vessels and nerve fibers in rat spinal cord using phase-contrast synchrotron radiation microtomography. Journal of Synchrotron Radiation, 2017, 24, 482-489.	2.4	15
58	Comparison of Synchrotron Radiation-based Propagation Phase Contrast Imaging and Conventional Micro-computed Tomography for Assessing Intervertebral Discs and Endplates in a Murine Model. Spine, 2017, 42, E883-E889.	2.0	15
59	Osteopontin, Bone Morphogenetic Protein-4, and Vitamin D Receptor Gene Polymorphisms in the Susceptibility and Clinical Severity of Spinal Tuberculosis. Cellular Physiology and Biochemistry, 2017, 41, 1881-1893.	1.6	9
60	Genetic factors of cervical spondylotic myelopathy-a systemic review. Journal of Clinical Neuroscience, 2017, 44, 89-94.	1.5	10
61	Three Dimensional Quantification of Microarchitecture and Vessel Regeneration by Synchrotron Radiation Microcomputed Tomography in a Rat Model of Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 1187-1199.	3.4	30
62	Correlation study between facet joint cartilage and intervertebral discs in early lumbar vertebral degeneration using T2, T2* and T1i-mapping. PLoS ONE, 2017, 12, e0178406.	2.5	8
63	MicroRNA-336 directly targets Sox-2 in osteosarcoma to inhibit tumorigenesis. Molecular Medicine Reports, 2017, 15, 4217-4224.	2.4	3
64	Histological observation of a gelatin sponge transplant loaded with bone marrow-derived mesenchymal stem cells combined with platelet-rich plasma in repairing an annulus defect. PLoS ONE, 2017, 12, e0171500.	2.5	22
65	The Angiogenic Effect of microRNA-21 Targeting TIMP3 through the Regulation of MMP2 and MMP9. PLoS ONE, 2016, 11, e0149537.	2.5	64
66	Micro-CT as a Tool to Investigate the Efficacy of Tetramethylpyrazine in a Rat Spinal Cord Injury Model. Spine, 2016, 41, 1272-1278.	2.0	16
67	Visualization of mouse spinal cord intramedullary arteries using phase- and attenuation-contrast tomographic imaging. Journal of Synchrotron Radiation, 2016, 23, 966-974.	2.4	6
68	C-C motif chemokine ligand 20 regulates neuroinflammation following spinal cord injury via Th17 cell recruitment. Journal of Neuroinflammation, 2016, 13, 162.	7.2	36
69	Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats. Neuroscience, 2016, 328, 40-49.	2.3	24
70	The effect of lowâ€intensity pulsed ultrasound on boneâ€tendon junction healing: Initiating after inflammation stage. Journal of Orthopaedic Research, 2016, 34, 1697-1706.	2.3	36
71	Initiation Timing of Low-Intensity Pulsed Ultrasound Stimulation for Tendon-Bone Healing in a Rabbit Model. American Journal of Sports Medicine, 2016, 44, 2706-2715.	4.2	49
72	3D visualization of the lumbar facet joint after degeneration using propagation phase contrast micro-tomography. Scientific Reports, 2016, 6, 21838.	3.3	12

#	Article	IF	Citations
73	Three-dimensional imaging of microvasculature in the rat spinal cord following injury. Scientific Reports, 2015, 5, 12643.	3.3	58
74	Effects of Low-Intensity Pulsed Ultrasound on New Trabecular Bone during Bone–Tendon Junction Healing in a Rabbit Model: A Synchrotron Radiation Micro-CT Study. PLoS ONE, 2015, 10, e0124724.	2.5	18
75	The Neuroprotective Effect of Tetramethylpyrazine Against Contusive Spinal Cord Injury by Activating PGC-1α in Rats. Neurochemical Research, 2015, 40, 1393-1401.	3.3	38
76	Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits. Journal of Materials Science: Materials in Medicine, 2015, 26, 257.	3.6	19
77	miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Research, 2015, 1608, 191-202.	2.2	109
78	Preparation and Characterization of a Novel Decellularized Fibrocartilage "Book―Scaffold for Use in Tissue Engineering. PLoS ONE, 2015, 10, e0144240.	2.5	17
79	Comment on Quinn et al.: the use of postoperative suction drainage in total knee arthroplasty: a systematic review. International Orthopaedics, 2014, 38, 2651-2652.	1.9	0
80	Highâ€resolution threeâ€dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro T. Medical Physics, 2014, 41, 101904.	3.0	35
81	Combined application of lowâ€intensity pulsed ultrasound and functional electrical stimulation accelerates bone–tendon junction healing in a rabbit model. Journal of Orthopaedic Research, 2014, 32, 204-209.	2.3	53
82	Enhanced Patella–Patellar Tendon Healing Using Combined Magnetic Fields in a Rabbit Model. American Journal of Sports Medicine, 2014, 42, 2495-2501.	4.2	39
83	Clinical outcomes of remnant preserving augmentation in anterior cruciate ligament reconstruction: a systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 1976-1985.	4.2	53
84	Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. BMC Musculoskeletal Disorders, 2014, 15, 114.	1.9	64
85	Reply to comment on Hu et al. "Allograft versus autograft for anterior cruciate ligament reconstruction: an up-to-date meta-analysis of prospective studies― International Orthopaedics, 2013, 37, 775-776.	1.9	1
86	Allograft versus autograft for anterior cruciate ligament reconstruction: an up-to-date meta-analysis of prospective studies. International Orthopaedics, 2013, 37, 311-320.	1.9	68
87	Area, length and mineralization content of new bone at bone–tendon junction predict its repair quality. Journal of Orthopaedic Research, 2011, 29, 672-677.	2.3	21
88	Low-Intensity Pulsed Ultrasound Accelerated Bone-Tendon Junction Healing Through Regulation of Vascular Endothelial Growth Factor Expression and Cartilage Formation. Ultrasound in Medicine and Biology, 2008, 34, 1248-1260.	1.5	104
89	Low-Intensity Pulsed Ultrasound Accelerates Bone-Tendon Junction Healing. American Journal of Sports Medicine, 2006, 34, 1287-1296.	4.2	82