David A Dean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1316300/publications.pdf Version: 2024-02-01

ΠΛΥΙΠ Δ ΠΕΛΝ

#	Article	IF	CITATIONS
1	Cytoplasmic transport and nuclear import of plasmid DNA. Bioscience Reports, 2017, 37, .	2.4	122
2	Electroporation-Mediated Gene Delivery. Advances in Genetics, 2015, 89, 49-88.	1.8	117
3	Electroporation-mediated Gene Transfer of the Na+,K+-ATPase Rescues Endotoxin-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 582-590.	5.6	72
4	Gene Transfer of the Na+,K+-ATPase β1 Subunit Using Electroporation Increases Lung Liquid Clearance. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 204-211.	5.6	70
5	Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals. American Journal of Physiology - Cell Physiology, 2005, 289, C233-C245.	4.6	61
6	Electroporation of the Vasculature and the Lung. DNA and Cell Biology, 2003, 22, 797-806.	1.9	41
7	Cell-Specific Targeting Strategies for Electroporation-Mediated Gene Delivery in Cells and Animals. Journal of Membrane Biology, 2013, 246, 737-744.	2.1	32
8	Proteomic and Functional Analyses of Protein–DNA Complexes During Gene Transfer. Molecular Therapy, 2013, 21, 775-785.	8.2	32
9	Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis. Scientific Reports, 2019, 9, 19643.	3.3	29
10	Functional Delivery of siRNA by Disulfide-Constrained Cyclic Amphipathic Peptides. ACS Medicinal Chemistry Letters, 2016, 7, 584-589.	2.8	28
11	Nonviral Gene Transfer Strategies for the Vasculature. Microcirculation, 2002, 9, 35-50.	1.8	26
12	Electroporation-Mediated Gene Delivery of Na+,K+-ATPase, and ENaC Subunits to the Lung Attenuates Acute Respiratory Distress Syndrome in a Two-Hit Porcine Model. Shock, 2015, 43, 16-23.	2.1	25
13	IL-13 Induces YY1 through the AKT Pathway in Lung Fibroblasts. PLoS ONE, 2015, 10, e0119039.	2.5	18
14	RNAi therapeutic strategies for acute respiratory distress syndrome. Translational Research, 2019, 214, 30-49.	5.0	15
15	Use of Electroporation for Efficacious Gene Delivery to the Lungs. ECS Transactions, 2011, 35, 167-177.	0.5	14
16	High expression of carbonic anhydrase IX is significantly associated with glandular lesions in gastroesophageal junction and with tumorigenesis markers BMI1, MCM4 and MCM7. BMC Gastroenterology, 2015, 15, 80.	2.0	14
17	Featured Article: Electroporation-mediated gene delivery of surfactant protein B (SP-B) restores expression and improves survival in mouse model of SP-B deficiency. Experimental Biology and Medicine, 2017, 242, 1345-1354.	2.4	14
18	In vivo rescue of recombinant Zika virus from an infectious cDNA clone and its implications in vaccine development. Scientific Reports, 2020, 10, 512.	3.3	14

DAVID A DEAN

#	Article	IF	CITATIONS
19	Pulmonary gene delivery—Realities and possibilities. Experimental Biology and Medicine, 2021, 246, 260-274.	2.4	12
20	Leptomycin B alters the subcellular distribution of CRM1 (Exportin 1). Biochemical and Biophysical Research Communications, 2017, 488, 253-258.	2.1	11
21	Gene transfer of MRCKα rescues lipopolysaccharide-induced acute lung injury by restoring alveolar capillary barrier function. Scientific Reports, 2021, 11, 20862.	3.3	7
22	Identification of differentially regulated genes in human patent ductus arteriosus. Experimental Biology and Medicine, 2016, 241, 2112-2118.	2.4	6
23	MRCKα interacts with and mediates Na+, K+-ATPase-induced tight junction assembly in the lung epithelium. JCI Insight, 2021, 6, .	5.0	6
24	Changes in lung immune cell infiltrates after electric field treatment in mice. Scientific Reports, 2021, 11, 1453.	3.3	4
25	Gene Therapy for Acute Respiratory Distress Syndrome. Frontiers in Physiology, 2021, 12, 786255.	2.8	4
26	Synthesis and Application of Peptide–siRNA Nanoparticles from Disulfide-Constrained Cyclic Amphipathic Peptides for the Functional Delivery of Therapeutic Oligonucleotides to the Lung. Methods in Molecular Biology, 2021, 2208, 49-67.	0.9	3
27	Introduction to the Special Volume on Genomics and Gene Transfer. Microcirculation, 2002, 9, 1-2.	1.8	0
28	Gene Delivery of MRCKα Repairs the Alveolarâ€Capillary Barrier and Rescues the Experimental Lipopolysaccharideâ€Induced Acute Lung Injury. FASEB Journal, 2021, 35, .	0.5	0
29	Non Viral Gene Therapy Education For Lung Diseases Through Multimedia. , 0, , .		0