Marco Antonio Nogueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1315918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?. Scientia Agricola, 2013, 70, 274-289.	1.2	322
2	Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 2019, 9, 205.	3.0	280
3	Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils, 2013, 49, 791-801.	4.3	255
4	Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, 2016, 6, 3.	3.0	169
5	Soybean Seed Co-Inoculation with <i>Bradyrhizobium</i> spp. and <i>Azospirillum brasilense</i> : A New Biotechnological Tool to Improve Yield and Sustainability. American Journal of Plant Sciences, 2015, 06, 811-817.	0.8	129
6	Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Applied Soil Ecology, 2013, 72, 49-61.	4.3	124
7	Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Applied Soil Ecology, 2012, 59, 96-105.	4.3	108
8	Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems and Environment, 2016, 221, 125-131.	5.3	105
9	Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza, 2013, 23, 221-233.	2.8	90
10	Promising indicators for assessment of agroecosystems alteration among natural, reforested and agricultural land use in southern Brazil. Agriculture, Ecosystems and Environment, 2006, 115, 237-247.	5.3	80
11	Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado?. BMC Microbiology, 2016, 16, 42.	3.3	78
12	Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. Applied Soil Ecology, 2015, 86, 106-112.	4.3	76
13	Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in Mozambique. Agriculture, Ecosystems and Environment, 2017, 246, 291-305.	5.3	72
14	Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. Journal of Tropical Ecology, 2007, 23, 53-62.	1.1	68
15	Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crops Research, 2016, 195, 21-27.	5.1	67
16	Co-Inoculation of Soybean with <i>Bradyrhizobium</i> and <i>Azospirillum</i> Promotes Early Nodulation. American Journal of Plant Sciences, 2015, 06, 1641-1649.	0.8	67
17	Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza, 2008, 19, 37-45.	2.8	63
18	Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express, 2013, 3, 21.	3.0	59

#	Article	IF	CITATIONS
19	Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express, 2015, 5, 71.	3.0	59
20	Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil. European Journal of Soil Biology, 2013, 55, 117-123.	3.2	58
21	Strategies to promote early nodulation in soybean under drought. Field Crops Research, 2016, 196, 160-167.	5.1	57
22	Evaluation of the antibiotic activity of extracellular compounds produced by the Pseudomonas strain against the Xanthomonas citri pv. citri 306 strain. Biological Control, 2011, 56, 125-131.	3.0	56
23	Manganese Toxicity in Mycorrhizal and Phosphorus-Fertilized Soybean Plants. Journal of Plant Nutrition, 2004, 27, 141-156.	1.9	55
24	Environmental risk assessment of a metal-contaminated area in the Tropics. Tier I: screening phase. Journal of Soils and Sediments, 2010, 10, 1557-1571.	3.0	55
25	Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates. Biology and Fertility of Soils, 2020, 56, 537-549.	4.3	54
26	Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Revista Brasileira De Ciencia Do Solo, 2021, 45, .	1.3	47
27	Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Archives of Microbiology, 2018, 200, 47-56.	2.2	46
28	Investment in Fine Roots and Arbuscular Mycorrhizal Fungi Decrease During Succession in Three Brazilian Ecosystems. Biotropica, 2012, 44, 141-150.	1.6	43
29	Mineral nitrogen impairs the biological nitrogen fixation in soybean of determinate and indeterminate growth types. Journal of Plant Nutrition, 2017, 40, 1690-1701.	1.9	39
30	Changes in the genetic structure of Bacteria and microbial activity in an agricultural soil amended with tannery sludge. Soil Biology and Biochemistry, 2011, 43, 106-114.	8.8	38
31	Draft Genome Sequences of Azospirillum brasilense Strains Ab-V5 and Ab-V6, Commercially Used in Inoculants for Grasses and Legumes in Brazil. Genome Announcements, 2018, 6, .	0.8	38
32	Plants of Distinct Successional Stages Have Different Strategies for Nutrient Acquisition in an Atlantic Rain Forest Ecosystem. International Journal of Plant Sciences, 2019, 180, 186-199.	1.3	37
33	Identifying indicators of C and N cycling in a clayey Ultisol under different tillage and uses in winter. Applied Soil Ecology, 2014, 76, 95-101.	4.3	34
34	Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Archives of Microbiology, 2018, 200, 1191-1203.	2.2	34
35	Feasibility of Lowering Soybean Planting Density without Compromising Nitrogen Fixation and Yield. Agronomy Journal, 2014, 106, 2118-2124.	1.8	33
36	Biochemical and Molecular Characterization of High Population Density Bacteria Isolated from Sunflower. Journal of Microbiology and Biotechnology, 2012, 22, 437-447.	2.1	33

Marco Antonio Nogueira

#	Article	IF	CITATIONS
37	Ecological Risk Assessment of a Metal-Contaminated Area in the Tropics. Tier II: Detailed Assessment. PLoS ONE, 2015, 10, e0141772.	2.5	32
38	Plant growth and phosphorus uptake in mycorrhizal rangpur lime seedlings under different levels of phosphorus. Pesquisa Agropecuaria Brasileira, 2006, 41, 93-99.	0.9	29
39	Interaction among N-fixing bacteria and AM fungi in Amazonian legume tree (Schizolobium) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
40	Feasibility of transference of inoculation-related technologies: A case study of evaluation of soybean rhizobial strains under the agro-climatic conditions of Brazil and Mozambique. Agriculture, Ecosystems and Environment, 2018, 261, 230-240.	5.3	28
41	Selection of host-plant genotype: the next step to increase grain legume N2 fixation activity. Journal of Experimental Botany, 2018, 69, 3523-3530.	4.8	27
42	Sporulation and diversity of arbuscular mycorrhizal fungi in Brazil Pine in the field and in the greenhouse. Mycorrhiza, 2007, 17, 519-526.	2.8	26
43	Strategies to deal with drought-stress in biological nitrogen fixation in soybean. Applied Soil Ecology, 2022, 172, 104352.	4.3	25
44	Interactions between diazotrophic bacteria and mycorrhizal fungus in maize genotypes. Scientia Agricola, 2008, 65, 525-531.	1.2	24
45	Seed preâ€inoculation with <i>Bradyrhizobium</i> as timeâ€optimizing option for largeâ€scale soybean cropping systems. Agronomy Journal, 2020, 112, 5222-5236.	1.8	23
46	Seed and leaf-spray inoculation of PGPR in brachiarias (Urochloa spp.) as an economic and environmental opportunity to improve plant growth, forage yield and nutrient status. Plant and Soil, 2021, 463, 171-186.	3.7	23
47	Succession and environmental variation influence soil exploration potential by fine roots and mycorrhizal fungi in an Atlantic ecosystem in southern Brazil. Journal of Tropical Ecology, 2014, 30, 237-248.	1.1	20
48	Interações microbianas na disponibilidade e absorção de manganês por soja. Pesquisa Agropecuaria Brasileira, 2002, 37, 1605-1612.	0.9	19
49	Outstanding impact of soil tillage on the abundance of soil hydrolases revealed by a metagenomic approach. Brazilian Journal of Microbiology, 2018, 49, 723-730.	2.0	17
50	Biomass Yield, Nitrogen Accumulation and Nutritive Value of Mavuno Grass Inoculated with Plant Growth-promoting Bacteria. Communications in Soil Science and Plant Analysis, 2019, 50, 1931-1942.	1.4	17
51	Phosphorus availability changes the internal and external endomycorrhizal colonization and affects symbiotic effectivenes. Scientia Agricola, 2007, 64, 295-300.	1.2	17
52	Compatibility of <i>Azospirillum brasilense</i> with Pesticides Used for Treatment of Maize Seeds. International Journal of Microbiology, 2020, 2020, 1-8.	2.3	16
53	The Challenge of Combining High Yields with Environmentally Friendly Bioproducts: A Review on the Compatibility of Pesticides with Microbial Inoculants. Agronomy, 2021, 11, 870.	3.0	16
54	Infection intensity, spore density and inoculum potential of arbuscular mycorrhizal fungi decrease during secondary succession in tropical Brazilian ecosystems. Journal of Tropical Ecology, 2012, 28, 453-462.	1.1	15

#	Article	IF	CITATIONS
55	Effects of tannery sludge application on physiological and fatty acid profiles of the soil microbial community. Applied Soil Ecology, 2012, 61, 92-99.	4.3	15
56	Impact of pesticides in properties of Bradyrhizobium spp. and in the symbiotic performance with soybean. World Journal of Microbiology and Biotechnology, 2020, 36, 172.	3.6	15
57	Azospirillum inoculation of 'Marandu' palisade grass seeds: effects on forage production and nutritional status. Semina:Ciencias Agrarias, 2020, 41, 465-478.	0.3	15
58	Preinoculation of Soybean Seeds Treated with Agrichemicals up to 30 Days before Sowing: Technological Innovation for Large-Scale Agriculture. International Journal of Microbiology, 2017, 2017, 1-11.	2.3	14
59	Soil quality indicators in a rhodic kandiudult under different uses in northern Parana, Brazil. Revista Brasileira De Ciencia Do Solo, 2014, 38, 50-59.	1.3	13
60	Soybean tolerance to drought depends on the associated Bradyrhizobium strain. Brazilian Journal of Microbiology, 2020, 51, 1977-1986.	2.0	13
61	Differences between root traits of early- and late-successional trees influence below-ground competition and seedling establishment. Journal of Tropical Ecology, 2016, 32, 300-313.	1.1	12
62	Importance of Mycorrhizae in Tropical Soils. , 2017, , 245-267.		12
63	Magnesium-manganese interaction in soybean cultivars with different nutritional requirements. Journal of Plant Nutrition, 2017, 40, 372-381.	1.9	12
64	Water restriction and physiological traits in soybean genotypes contrasting for nitrogen fixation drought tolerance. Scientia Agricola, 2017, 74, 110-117.	1.2	12
65	Combining microorganisms in inoculants is agronomically important but industrially challenging: case study of a composite inoculant containing Bradyrhizobium and Azospirillum for the soybean crop. AMB Express, 2021, 11, 71.	3.0	12
66	Method for Recovering and Counting Viable Cells from Maize Seeds Inoculated with Azospirillum brasilense. Journal of Pure and Applied Microbiology, 2020, 14, 195-204.	0.9	12
67	Classic and molecular study of Giardia duodenalis in children from a daycare center in the region of Presidente Prudente, São Paulo, Brazil. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2009, 51, 19-24.	1.1	11
68	Arbuscular mycorrhizas increase survival, precocity and flowering of herbaceous and shrubby species of early stages of tropical succession in pot cultivation. Journal of Tropical Ecology, 2014, 30, 599-614.	1.1	11
69	So many rhizobial partners, so little nitrogen fixed: The intriguing symbiotic promiscuity of common bean (Phaseolus vulgaris L.). Symbiosis, 2022, 86, 169-185.	2.3	11
70	Dosage-dependent shift in the spore community of arbuscular mycorrhizal fungi following application of tannery sludge. Mycorrhiza, 2011, 21, 515-522.	2.8	10
71	Quorum sensing communication: <i>Bradyrhizobiumâ€Azospirillum</i> interaction via Nâ€acylâ€homoserine lactones in the promotion of soybean symbiosis. Journal of Basic Microbiology, 2019, 59, 38-53.	3.3	10
72	Towards sustainable yield improvement: field inoculation of soybean with Bradyrhizobium and co-inoculation with Azospirillum in Mozambique. Archives of Microbiology, 2020, 202, 2579-2590.	2.2	10

#	Article	IF	CITATIONS
73	Gas Exchanges and Biological Nitrogen Fixation in Soybean under Water Restriction. American Journal of Plant Sciences, 2014, 05, 4011-4017.	0.8	10
74	Land Application of Municipal Landfill Leachate: Fate of Ions and Ammonia Volatilization. Journal of Environmental Quality, 2013, 42, 523-531.	2.0	9
75	Microbial diversity in an Oxisol under no-tillage and conventional tillage in southern Brazil. Revista Ciencia Agronomica, 2014, 45, 863-870.	0.3	9
76	Reclamation status of a degraded pasture based on soil health indicators. Scientia Agricola, 2015, 72, 195-202.	1.2	9
77	INFLUENCE OF MYCORRHIZAS, ORGANIC SUBSTRATES AND CONTAINER VOLUMES ON THE GROWTH OF Heliocarpus popayanensis Kunth. Cerne, 2015, 21, 395-403.	0.9	8
78	Mycorrhizal dependency of mangaba tree under increasing phosphorus levels. Pesquisa Agropecuaria Brasileira, 2008, 43, 887-892.	0.9	8
79	Inoculação de bactérias promotoras do crescimento vegetal em Urochloa Ruziziensis. Research, Society and Development, 2020, 9, .	0.1	8
80	Physiological and N2-fixation-related traits for tolerance to drought in soybean progenies. Pesquisa Agropecuaria Brasileira, 0, 54, .	0.9	7
81	Effect of Landfill Leachate on Cereal Nutrition and Productivity and on Soil Properties. Journal of Environmental Quality, 2016, 45, 1080-1086.	2.0	6
82	Application of Landfill Leachate Improves Wheat Nutrition and Yield but Has Minor Effects on Soil Properties. Journal of Environmental Quality, 2017, 46, 153-159.	2.0	6
83	Nitrogen in Shoots, Number of Tillers, Biomass Yield and Nutritive Value of Zuri Guinea Grass Inoculated with Plant-Growth Promoting Bacteria. International Journal for Innovation Education and Research, 2020, 8, 437-463.	0.1	6
84	Biological nitrogen fixation in soybean under water restriction and exposed to 1-methylcyclopropene. Pesquisa Agropecuaria Brasileira, 2016, 51, 818-823.	0.9	5
85	Interactions between arbuscular mycorrhizal fungi and exotic grasses differentially affect the establishment of seedlings of early- and late-successional woody species. Applied Soil Ecology, 2018, 124, 394-406.	4.3	5
86	Draft Genome Sequence of <i>Agrobacterium deltaense</i> Strain CNPSo 3391, Isolated from a Soybean Nodule in Mozambique. Microbiology Resource Announcements, 2019, 8, .	0.6	5
87	Yield, yield components and nutrients uptake in Zuri Guinea grass inoculated with plant growth-promoting bacteria. International Journal for Innovation Education and Research, 2020, 8, 103-124.	0.1	5
88	Microbiological quality analysis of inoculants based on Bradyrhizobium spp. and Azospirillum brasilense produced "on farm―reveals high contamination with non-target microorganisms. Brazilian Journal of Microbiology, 2022, 53, 267.	2.0	4
89	Microsphere stem blockage as a screen for nitrogenâ€fixation drought tolerance in soybean. Physiologia Plantarum, 2021, 172, 1376-1381.	5.2	3
90	Effect of Bacillus thuringiensis on microbial functional groups in sorghum rhizosphere. Pesquisa Agropecuaria Brasileira, 2006, 41, 873-877.	0.9	3

#	Article	IF	CITATIONS
91	Indicators of soil quality in the implantation of no-till system with winter crops. Revista Ciencia Agronomica, 2014, 45, 990-998.	0.3	3
92	Genetic variation in symbiotic islands of natural variant strains of soybean Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens differing in competitiveness and in the efficiency of nitrogen fixation. Microbial Genomics, 2022, 8, .	2.0	3
93	Precrops and N-fertilizer impacts on soybean performance in tropical regions of Brazil. Acta Scientiarum - Agronomy, 0, 44, e54650.	0.6	3
94	Draft Genome Sequence of Bradyrhizobium elkanii Strain SEMIA 938, Used in Commercial Inoculants for Lupinus spp. in Brazil. Microbiology Resource Announcements, 2019, 8, .	0.6	2
95	Biomass Yield, Nitrogen Content and Uptake, And Nutritive Value of Alfalfa Co-Inoculated with Plant-Growth Promoting Bacteria. International Journal for Innovation Education and Research, 2020, 8, 400-420.	0.1	2
96	Inoculation with plant growth-promoting bacteria and reduction of nitrogen fertilizer in herbage accumulation and nutritional value of Mavuno grass. International Journal for Innovation Education and Research, 2021, 9, 16-34.	0.1	1
97	Enrichment of organic compost with beneficial microorganisms and yield performance of corn and wheat. Revista Brasileira De Engenharia Agricola E Ambiental, 2021, 25, 332-339.	1.1	0
98	Co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense on the physiological quality of soybean seeds. Semina:Ciencias Agrarias, 2020, 41, 2937-2950.	0.3	0