Min Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1315502/publications.pdf

Version: 2024-02-01

236833 345118 4,370 39 25 36 citations h-index g-index papers 39 39 39 6036 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 2017, 11, 5800-5807.	7.3	557
2	Oxygen Vacancies Dominated NiS ₂ /CoS ₂ Interface Porous Nanowires for Portable Zn–Air Batteries Driven Water Splitting Devices. Advanced Materials, 2017, 29, 1704681.	11.1	533
3	Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. Journal of Power Sources, 2016, 307, 391-400.	4.0	499
4	Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. Advanced Materials, 2021, 33, e2006328.	11.1	392
5	Iridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. Journal of the American Chemical Society, 2020, 142, 18378-18386.	6.6	334
6	FeS ₂ /CoS ₂ Interface Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2018, 14, e1801070.	5.2	273
7	Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc–Air Battery with Neutral Aqueous Electrolyte. Journal of the American Chemical Society, 2018, 140, 17624-17631.	6.6	258
8	Optimized Metal Chalcogenides for Boosting Water Splitting. Advanced Science, 2020, 7, 1903070.	5 . 6	190
9	Atomic Arrangement in Metalâ€Doped NiS ₂ Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie - International Edition, 2019, 58, 18676-18682.	7.2	174
10	Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chemical Science, 2019, 10, 3779-3785.	3.7	151
11	NiCo ₂ O ₄ â€Based Nanosheets with Uniform 4 nm Mesopores for Excellent Zn–Air Battery Performance. Advanced Materials, 2020, 32, e2001651.	11.1	120
12	Emerging â‰^800 nm Excited Lanthanideâ€Doped Upconversion Nanoparticles. Small, 2017, 13, 1602843.	5.2	92
13	Paving Metal–Organic Frameworks with Upconversion Nanoparticles via Self-Assembly. Journal of the American Chemical Society, 2018, 140, 15507-15515.	6.6	85
14	Metallic CuCo2S4 nanosheets of atomic thickness as efficient bifunctional electrocatalysts for portable, flexible Zn-air batteries. Nanoscale, 2018, 10, 6581-6588.	2.8	69
15	Cathode Reactions and Applications in Microbial Fuel Cells: A Review. Critical Reviews in Environmental Science and Technology, 2012, 42, 2504-2525.	6.6	60
16	Dual-Signal Luminescent Detection of Dopamine by a Single Type of Lanthanide-Doped Nanoparticles. ACS Sensors, 2018, 3, 1683-1689.	4.0	56
17	Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. Nano Research, 2020, 13, 729-735.	5. 8	56
18	Chemical Vapor Transport Reactions for Synthesizing Layered Materials and Their 2D Counterparts. Small, 2019, 15, e1804404.	5.2	52

#	Article	IF	Citations
19	Transition Metal (Fe, Co and Ni)â^'Carbideâ^'Nitride (Mâ^'Câ^'N) Nanocatalysts: Structure and Electrocatalytic Applications. ChemCatChem, 2019, 11, 2780-2792.	1.8	46
20	<i>In Situ</i> Activated Co _{3–<i>x</i>} Ni _{<i>x</i>} O ₄ as a Highly Active and Ultrastable Electrocatalyst for Hydrogen Generation. ACS Catalysis, 2021, 11, 8174-8182.	5 . 5	43
21	Revisiting the Growth of Black Phosphorus in Sn-I Assisted Reactions. Frontiers in Chemistry, 2019, 7, 21.	1.8	41
22	Atomic Arrangement in Metalâ€Doped NiS ₂ Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie, 2019, 131, 18849-18855.	1.6	38
23	Ultrafast Cathodic Exfoliation of Few-Layer Black Phosphorus in Aqueous Solution. ACS Applied Nano Materials, 2019, 2, 3793-3801.	2.4	35
24	Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst. International Journal of Molecular Sciences, 2017, 18, 276.	1.8	33
25	Improving the Performance of Microbial Fuel Cells through Anode Manipulation. ChemPlusChem, 2015, 80, 1216-1225.	1.3	28
26	Packed anode derived from cocklebur fruit for improving long-term performance of microbial fuel cells. Science China Materials, 2019, 62, 645-652.	3 . 5	26
27	Heavy metals in the riverbed surface sediment of the Yellow River, China. Environmental Science and Pollution Research, 2016, 23, 24768-24780.	2.7	21
28	Perovskite Oxides for Cathodic Electrocatalysis of Energyâ€Related Gases: From O ₂ to CO ₂ and N ₂ . Advanced Functional Materials, 2021, 31, 2101872.	7.8	21
29	CoFe ₂ O ₄ nanoparticles as efficient bifunctional catalysts applied in Zn–air battery. Journal of Materials Research, 2018, 33, 590-600.	1.2	18
30	Phosphorus in the catchment of high sediment load river: A case of the Yellow River, China. Science of the Total Environment, 2016, 572, 660-670.	3.9	17
31	<i>In situ</i> exsolved Co components on wood ear-derived porous carbon for catalyzing oxygen reduction over a wide pH range. Journal of Materials Chemistry A, 2021, 9, 10695-10703.	5. 2	16
32	Electronic engineering of amorphous Fe–Co–S sites in hetero-nanoframes for oxygen evolution and flexible Al–air batteries. Journal of Materials Chemistry A, 2022, 10, 19757-19768.	5. 2	11
33	Organic Linkers Enable Tunable Transfer of Migrated Energy from Upconversion Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31783-31792.	4.0	9
34	Spatial and temporal changes in desertification in the southern region of the Tengger Desert from 1973 to 2009. Theoretical and Applied Climatology, 2017, 129, 487-502.	1.3	7
35	Polyelectrolyte–single wall carbon nanotube composite as an effective cathode catalyst for air-cathode microbial fuel cells. Water Science and Technology, 2014, 70, 1610-1616.	1.2	3
36	Carbon nanofiber-based catalysts derived from polyacrylonitrile for efficient oxygen reduction in alkaline and neutral Zn-air batteries. Materials Chemistry Frontiers, 0, , .	3.2	3

Min Lu

#	Article	IF	CITATIONS
37	Pressure-induced phase transitions in weak interlayer coupling CdPS3. Applied Physics Letters, 2022, 120, .	1.5	3
38	Frontispiece: Improving the Performance of Microbial Fuel Cells through Anode Manipulation. ChemPlusChem, 2015, 80, n/a-n/a.	1.3	0
39	Upconversion Nanoparticles: Emerging â‰^800 nm Excited Lanthanideâ€Đoped Upconversion Nanoparticles (Small 6/2017). Small, 2017, 13, .	5.2	O