
Jin Young Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1315415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science, 2007, 317, 222-225.	6.0	3,142
2	Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381-385.	13.7	2,095
3	Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2008, 130, 3619-3623.	6.6	1,511
4	High-Efficiency Perovskite Solar Cells. Chemical Reviews, 2020, 120, 7867-7918.	23.0	1,480
5	Conformal quantum dot–SnO ₂ layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375, 302-306.	6.0	872
6	High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Journal of the American Chemical Society, 2016, 138, 375-380.	6.6	643
7	Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics, 2013, 7, 732-738.	15.6	501
8	Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7, 80-85.	8.2	459
9	Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science, 2020, 368, 155-160.	6.0	420
10	Soft network composite materials with deterministic and bio-inspired designs. Nature Communications, 2015, 6, 6566.	5.8	392
11	Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Selfâ€Organized Polymeric Hole Extraction Layers with High Work Function. Advanced Materials, 2014, 26, 6461-6466.	11.1	321
12	An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale, 2016, 8, 11403-11412.	2.8	307
13	Smallâ€Bandgap Polymer Solar Cells with Unprecedented Short ircuit Current Density and High Fill Factor. Advanced Materials, 2015, 27, 3318-3324.	11.1	294
14	Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6, 7348.	5.8	281
15	Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6, 6679.	2.8	275
16	Multipositional Silica-Coated Silver Nanoparticles for High-Performance Polymer Solar Cells. Nano Letters, 2013, 13, 2204-2208.	4.5	244
17	Combination of Titanium Oxide and a Conjugated Polyelectrolyte for Highâ€Performance Invertedâ€Type Organic Optoelectronic Devices. Advanced Materials, 2011, 23, 2759-2763.	11.1	242
18	Effect of the Molecular Weight of Poly(3â€hexylthiophene) on the Morphology and Performance of Polymer Bulk Heterojunction Solar Cells. Macromolecular Rapid Communications, 2007, 28, 1776-1780.	2.0	226

#	Article	IF	CITATIONS
19	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	11.1	213
20	Nb-Doped TiO ₂ : A New Compact Layer Material for TiO ₂ Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 6878-6882.	1.5	210
21	Functionalized Methanofullerenes Used as n-Type Materials in Bulk-Heterojunction Polymer Solar Cells and in Field-Effect Transistors. Journal of the American Chemical Society, 2008, 130, 6444-6450.	6.6	208
22	Ni–NiO core–shell inverse opal electrodes for supercapacitors. Chemical Communications, 2011, 47, 5214.	2.2	202
23	High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano Letters, 2015, 15, 7691-7696.	4.5	198
24	Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices. Nano Letters, 2015, 15, 7933-7942.	4.5	196
25	Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. Journal of Materials Chemistry, 2011, 21, 3438-3442.	6.7	194
26	Two-Step Solâ^'Gel Method-Based TiO ₂ Nanoparticles with Uniform Morphology and Size for Efficient Photo-Energy Conversion Devices. Chemistry of Materials, 2010, 22, 1958-1965.	3.2	166
27	Amineâ€Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells. Advanced Materials, 2014, 26, 494-500.	11.1	159
28	Highâ€Performance Organic Optoelectronic Devices Enhanced by Surface Plasmon Resonance. Advanced Materials, 2011, 23, 5689-5693.	11.1	152
29	Improved Quantum Efficiency of Highly Efficient Perovskite BaSnO ₃ -Based Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 1027-1035.	7.3	150
30	Interplay of Intramolecular Noncovalent Coulomb Interactions for Semicrystalline Photovoltaic Polymers. Chemistry of Materials, 2015, 27, 5997-6007.	3.2	150
31	Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Advanced Energy Materials, 2016, 6, 1502109.	10.2	147
32	High-Temperature–Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells. ACS Nano, 2017, 11, 6057-6064.	7.3	142
33	Oxygenâ€Vacancyâ€Introduced BaSnO _{3â^'} <i>_δ</i> Photoanodes with Tunable Band Structures for Efficient Solarâ€Driven Water Splitting. Advanced Materials, 2019, 31, e1903316.	11.1	140
34	High-efficiency polymer solar cells with a cost-effective quinoxaline polymer through nanoscale morphology control induced by practical processing additives. Energy and Environmental Science, 2013, 6, 1909.	15.6	137
35	Highly Efficient Polymer Light-Emitting Diodes Using Graphene Oxide as a Hole Transport Layer. ACS Nano, 2012, 6, 2984-2991.	7.3	127
36	Recent progress in indoor organic photovoltaics. Nanoscale, 2020, 12, 5792-5804.	2.8	126

#	Article	lF	CITATIONS
37	Double‧ided Junctions Enable Highâ€Performance Colloidalâ€Quantumâ€Dot Photovoltaics. Advanced Materials, 2016, 28, 4142-4148.	11.1	121
38	Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route. Scientific Reports, 2013, 3, 3069.	1.6	120
39	300% Enhancement of Carrier Mobility in Uniaxialâ€Oriented Perovskite Films Formed by Topotacticâ€Oriented Attachment. Advanced Materials, 2017, 29, 1606831.	11.1	120
40	Poly(fluorenevinylene) Derivative by Gilch Polymerization for Light-Emitting Diode Applications. Macromolecules, 2002, 35, 7532-7534.	2.2	119
41	Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO ₂ Nanotube-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 13433-13441.	1.5	114
42	Lowâ€Temperature Hydrothermal Synthesis of Pure BiFeO ₃ Nanopowders Using Triethanolamine and Their Applications as Visibleâ€Light Photocatalysts. Journal of the American Ceramic Society, 2008, 91, 3753-3755.	1.9	112
43	Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrroleâ€Based Lowâ€Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte Electronâ€Transport Layers. Advanced Materials, 2013, 25, 4783-4788.	11.1	111
44	A Selenophene Analogue of PCDTBT: Selective Fine-Tuning of LUMO to Lower of the Bandgap for Efficient Polymer Solar Cells. Macromolecules, 2012, 45, 8658-8664.	2.2	110
45	General Strategy for Fabricating Transparent TiO ₂ Nanotube Arrays for Dye-Sensitized Photoelectrodes: Illumination Geometry and Transport Properties. ACS Nano, 2011, 5, 2647-2656.	7.3	109
46	Silver-Based Nanoparticles for Surface Plasmon Resonance in Organic Optoelectronics. Particle and Particle Systems Characterization, 2015, 32, 164-175.	1.2	106
47	Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. Nano Letters, 2017, 17, 6385-6390.	4.5	106
48	Graphene Oxide Nanoribbon as Hole Extraction Layer to Enhance Efficiency and Stability of Polymer Solar Cells. Advanced Materials, 2014, 26, 786-790.	11.1	102
49	In ₂ S ₃ Atomic Layer Deposition and Its Application as a Sensitizer on TiO ₂ Nanotube Arrays for Solar Energy Conversion. Journal of Physical Chemistry C, 2010, 114, 8032-8039.	1.5	100
50	Completely Transparent Conducting Oxide-Free and Flexible Dye-Sensitized Solar Cells Fabricated on Plastic Substrates. ACS Nano, 2015, 9, 3760-3771.	7.3	100
51	Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. Journal of Materials Chemistry A, 2019, 7, 1107-1114.	5.2	100
52	Semicrystalline D–A Copolymers with Different Chain Curvature for Applications in Polymer Optoelectronic Devices. Macromolecules, 2014, 47, 1604-1612.	2.2	95
53	An Organic Surface Modifier to Produce a High Work Function Transparent Electrode for High Performance Polymer Solar Cells. Advanced Materials, 2015, 27, 892-896.	11.1	94
54	Surface modification of metal oxide using ionic liquid molecules in hybrid organic–inorganic optoelectronic devices. Journal of Materials Chemistry, 2011, 21, 2051.	6.7	93

#	Article	IF	CITATIONS
55	Zn ₂ SnO ₄ -Based Photoelectrodes for Organolead Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 22991-22994.	1.5	92
56	Single Component Organic Solar Cells Based on Oligothiopheneâ€Fullerene Conjugate. Advanced Functional Materials, 2017, 27, 1702474.	7.8	91
57	Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 4050-4056.	7.3	89
58	Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy and Environmental Science, 2012, 5, 7989.	15.6	88
59	Synthesis of PCDTBT-Based Fluorinated Polymers for High Open-Circuit Voltage in Organic Photovoltaics: Towards an Understanding of Relationships between Polymer Energy Levels Engineering and Ideal Morphology Control. ACS Applied Materials & Interfaces, 2014, 6, 7523-7534.	4.0	88
60	Highly Efficient Copper–Zinc–Tin–Selenide (CZTSe) Solar Cells by Electrodeposition. ChemSusChem, 2014, 7, 1073-1077.	3.6	88
61	Influence of anatase-rutile phase transformation on dielectric properties of sol-gel derived TiO2 thin films. Journal of Electroceramics, 2006, 16, 447-451.	0.8	87
62	Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes. Energy and Environmental Science, 2012, 5, 8950.	15.6	87
63	Synthesis and Electroluminescence Properties of Poly(9,9-di-n-octylfluorenyl-2,7-vinylene) Derivatives for Light-Emitting Displayâ€. Macromolecules, 2003, 36, 3841-3847.	2.2	85
64	Investigation of Charge Carrier Behavior in High Performance Ternary Blend Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600637.	10.2	85
65	Hot slot die coating for additive-free fabrication of high performance roll-to-roll processed polymer solar cells. Energy and Environmental Science, 2018, 11, 3248-3255.	15.6	85
66	Highly Efficient and Uniform 1 cm ² Perovskite Solar Cells with an Electrochemically Deposited NiO _{<i>x</i>} Holeâ€Extraction Layer. ChemSusChem, 2017, 10, 2660-2667.	3.6	84
67	High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole. Energy and Environmental Science, 2017, 10, 1443-1455.	15.6	84
68	Synergistic enhancement and mechanism study of mechanical and moisture stability of perovskite solar cells introducing polyethylene-imine into the CH ₃ NH ₃ PbI ₃ /HTM interface. Journal of Materials Chemistry A, 2015, 3, 22176-22182.	5.2	80
69	Carrier generation and transport in bulk heterojunction films processed with 1,8-octanedithiol as a processing additive. Journal of Applied Physics, 2008, 104, .	1.1	78
70	Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells. Chemical Science, 2016, 7, 5517-5522.	3.7	78
71	A Three-Terminal Monolithic Perovskite/Si Tandem Solar Cell Characterization Platform. Joule, 2019, 3, 807-818.	11.7	78
72	Synthesis of a New Cross-Linkable Perfluorocyclobutane-Based Hole-Transport Material. Organic Letters, 2006, 8, 4703-4706.	2.4	73

#	Article	IF	CITATIONS
73	Design, Synthesis, and Electroluminescent Property of CNâ^'Poly(dihexylfluorenevinylene) for LEDs. Macromolecules, 2003, 36, 6970-6975.	2.2	71
74	Importance of 4- <i>tert</i> -Butylpyridine in Electrolyte for Dye-Sensitized Solar Cells Employing SnO ₂ Electrode. Journal of Physical Chemistry C, 2012, 116, 22759-22766.	1.5	71
75	New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p–i–n Geometry. Journal of Physical Chemistry C, 2015, 119, 27285-27290.	1.5	71
76	Stabilized Blue Emission from Organic Light-Emitting Diodes Using Poly(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[def]phenanthrene)). Macromolecules, 2005, 38, 6285-6289.	2.2	70
77	Stabilized Polymers with Novel Indenoindene Backbone against Photodegradation for LEDs and Solar Cells. Macromolecules, 2008, 41, 7296-7305.	2.2	70
78	Redox-active charge carriers of conducting polymers as a tuner of conductivity and its potential window. Scientific Reports, 2013, 3, 2454.	1.6	70
79	Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles. Energy and Environmental Science, 2013, 6, 1949.	15.6	69
80	Electroluminescence in polymer-fullerene photovoltaic cells. Applied Physics Letters, 2005, 86, 183502.	1.5	67
81	Nanoparticleâ€Enhanced Silverâ€Nanowire Plasmonic Electrodes for Highâ€Performance Organic Optoelectronic Devices. Advanced Materials, 2018, 30, e1800659.	11.1	67
82	Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. ACS Applied Materials & Interfaces, 2019, 11, 33835-33843.	4.0	67
83	Engineering the morphology <i>via</i> processing additives in multiple all-polymer solar cells for improved performance. Journal of Materials Chemistry A, 2018, 6, 10421-10432.	5.2	65
84	Novel Electroluminescent Polymers with Fluoro Groups in Vinylene Units. Macromolecules, 2004, 37, 6711-6715.	2.2	63
85	Reduced Graphene Oxide (rGO)-Wrapped Fullerene (C ₆₀) Wires. ACS Nano, 2011, 5, 8365-8371.	7.3	63
86	Improved Performance in Polymer Solar Cells Using Mixed PC ₆₁ BM/PC ₇₁ BM Acceptors. Advanced Energy Materials, 2015, 5, 1401687.	10.2	63
87	Interfacial electron accumulation for efficient homo-junction perovskite solar cells. Nano Energy, 2016, 28, 269-276.	8.2	63
88	Controlled synthesis of aligned Ni-NiO core-shell nanowire arrays on glass substrates as a new supercapacitor electrode. RSC Advances, 2012, 2, 8281.	1.7	62
89	Slotâ€Die and Rollâ€toâ€Roll Processed Single Junction Organic Photovoltaic Cells with the Highest Efficiency. Advanced Energy Materials, 2019, 9, 1901805.	10.2	62
90	Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. Advanced Energy Materials, 2020, 10, 2000768.	10.2	62

Jin Young Kim

#	Article	IF	CITATIONS
91	Effects of heterojunction on photoelectrocatalytic properties of ZnO–TiO2ZnO–TiO2 films. International Journal of Hydrogen Energy, 2007, 32, 3137-3140.	3.8	61
92	Efficient Conventional―and Invertedâ€Type Photovoltaic Cells Using a Planar Alternating Polythiophene Copolymer. Chemistry - A European Journal, 2012, 18, 2551-2558.	1.7	61
93	Functional Multilayered Transparent Conducting Oxide Thin Films for Photovoltaic Devices. Journal of Physical Chemistry C, 2009, 113, 1083-1087.	1.5	60
94	Vivid and Fully Saturated Blue Light-Emitting Diodes Based on Ligand-Modified Halide Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 23401-23409.	4.0	60
95	Inverted Colloidal Quantum Dot Solar Cells. Advanced Materials, 2014, 26, 3321-3327.	11.1	59
96	Preparation of a Nanoporous CaCO3-Coated TiO2 Electrode and Its Application to a Dye-Sensitized Solar Cell. Langmuir, 2007, 23, 11907-11910.	1.6	58
97	A universal processing additive for high-performance polymer solar cells. RSC Advances, 2017, 7, 7476-7482.	1.7	58
98	In Situ Observation of the Stability of Anatase Nanoparticles and Their Transformation to Rutile in an Acidic Solution. Langmuir, 2004, 20, 11732-11737.	1.6	57
99	Syntheses and properties of electroluminescent polyfluorene-based conjugated polymers, containing oxadiazole and carbazole units as pendants, for LEDs. Polymer, 2005, 46, 12158-12165.	1.8	57
100	Near-complete charge separation in tailored BiVO4-based heterostructure photoanodes toward artificial leaf. Applied Catalysis B: Environmental, 2021, 293, 120217.	10.8	57
101	Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene. Applied Physics Letters, 2006, 89, 153505.	1.5	56
102	Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 5826-5833.	7.3	56
103	Tailoring the Morphology and Structure of Nanosized Zn ₂ SiO ₄ : Mn ²⁺ Phosphors Using the Hydrothermal Method and Their Luminescence Properties. Journal of Physical Chemistry C, 2010, 114, 10330-10335.	1.5	54
104	Highly Crystalline and Low Bandgap Donor Polymers for Efficient Polymer Solar Cells. Advanced Materials, 2012, 24, 538-542.	11.1	53
105	Easily Attainable Phenothiazine-Based Polymers for Polymer Solar Cells: Advantage of Insertion of <i>S</i> , <i>S</i> ,dioxides into its Polymer for Inverted Structure Solar Cells. Macromolecules, 2012, 45, 1847-1857.	2.2	52
106	Nanoscopic Management of Molecular Packing and Orientation of Small Molecules by a Combination of Linear and Branched Alkyl Side Chains. ACS Nano, 2014, 8, 5988-6003.	7.3	52
107	Alkoxybenzothiadiazole-Based Fullerene and Nonfullerene Polymer Solar Cells with High Shunt Resistance for Indoor Photovoltaic Applications. ACS Applied Materials & Interfaces, 2018, 10, 3885-3894.	4.0	52
108	Efficient Exciton Diffusion in Organic Bilayer Heterojunctions with Nonfullerene Small Molecular Acceptors. ACS Energy Letters, 2020, 5, 1628-1635.	8.8	52

#	Article	IF	CITATIONS
109	Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead lodide-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41898-41905.	4.0	51
110	Green-solvent processable semiconducting polymers applicable in additive-free perovskite and polymer solar cells: molecular weights, photovoltaic performance, and thermal stability. Journal of Materials Chemistry A, 2018, 6, 5538-5543.	5.2	51
111	Nanowireâ€Based Threeâ€Dimensional Transparent Conducting Oxide Electrodes for Extremely Fast Charge Collection. Advanced Energy Materials, 2011, 1, 829-835.	10.2	50
112	Controlled Interfacial Electron Dynamics in Highly Efficient Zn ₂ SnO ₄ â€Based Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 501-509.	3.6	50
113	Simple Large-Scale Synthesis of Hydroxyapatite Nanoparticles: In Situ Observation of Crystallization Process. Langmuir, 2010, 26, 384-388.	1.6	49
114	Quinoxaline–thiophene based thick photovoltaic devices with an efficiency of â^1⁄48%. Journal of Materials Chemistry A, 2016, 4, 9967-9976.	5.2	49
115	Ladder-type heteroacenepolymers bearing carbazole and thiophene ring units and their use in field-effect transistors and photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 843-850.	6.7	48
116	Rapid Dye Adsorption via Surface Modification of TiO ₂ Photoanodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 5201-5207.	4.0	48
117	Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. Nano Energy, 2015, 17, 131-139.	8.2	48
118	Photocurrent Extraction Efficiency near Unity in a Thick Polymer Bulk Heterojunction. Advanced Functional Materials, 2016, 26, 3324-3330.	7.8	48
119	Interfacial engineering for highly efficient organic solar cells. Current Applied Physics, 2017, 17, 370-391.	1.1	47
120	Study of Burnâ€In Loss in Green Solventâ€Processed Ternary Blended Organic Photovoltaics Derived from UVâ€Crosslinkable Semiconducting Polymers and Nonfullerene Acceptors. Advanced Energy Materials, 2019, 9, 1901829.	10.2	47
121	Tailoring of Energy Levels in D-Ï€-A Organic Dyes via Fluorination of Acceptor Units for Efficient Dye-Sensitized Solar Cells. Scientific Reports, 2015, 5, 7711.	1.6	45
122	Bulk Heterojunction Materials Composed of Poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- <i>b</i>]thiophene): Ultrafast Electron Transfer and Carrier Recombination. Journal of Physical Chemistry C, 2008, 112, 7853-7857.	1.5	44
123	Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics. Electrochimica Acta, 2013, 88, 123-128.	2.6	44
124	Spectroscopically tracking charge separation in polymer : fullerene blends with a three-phase morphology. Energy and Environmental Science, 2015, 8, 2713-2724.	15.6	44
125	Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Solar Energy Materials and Solar Cells, 2006, 90, 2405-2412.	3.0	43
126	Perturbation of the Electron Transport Mechanism by Proton Intercalation in Nanoporous TiO ₂ Films. Nano Letters, 2012, 12, 2112-2116.	4.5	43

#	Article	IF	CITATIONS
127	Device Architectures for Enhanced Photon Recycling in Thinâ€Film Multijunction Solar Cells. Advanced Energy Materials, 2015, 5, 1400919.	10.2	41
128	Peroptronic devices: perovskite-based light-emitting solar cells. Energy and Environmental Science, 2017, 10, 1950-1957.	15.6	41
129	A synthetic approach to a fullerene-rich dendron and its linear polymer via ring-opening metathesis polymerization. Chemical Communications, 2011, 47, 3078.	2.2	40
130	Preparation of Cu2ZnSnS4 thin films via electrochemical deposition and rapid thermal annealing. Thin Solid Films, 2013, 546, 294-298.	0.8	40
131	Synthesis of fluorinated analogues of a practical polymer TQ for improved open-circuit voltages in polymer solar cells. Polymer Chemistry, 2014, 5, 2540.	1.9	40
132	Dithienogermoleâ€Containing Smallâ€Molecule Solar Cells with 7.3% Efficiency: Inâ€Depth Study on the Effects of Heteroatom Substitution of Si with Ge. Advanced Energy Materials, 2015, 5, 1402044.	10.2	40
133	Toward the Realization of A Practical Diketopyrrolopyrroleâ€Based Small Molecule for Improved Efficiency in Ternary BHJ Solar Cells. Macromolecular Rapid Communications, 2012, 33, 140-145.	2.0	39
134	Effects of Ionic Liquid Molecules in Hybrid PbS Quantum Dot–Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 1757-1760.	4.0	39
135	Plasmonic Transition via Interparticle Coupling of Au@Ag Core–Shell Nanostructures Sheathed in Double Hydrophilic Block Copolymer for High-Performance Polymer Solar Cell. Chemistry of Materials, 2015, 27, 4789-4798.	3.2	39
136	Pseudohalides in Leadâ \in Based Perovskite Semiconductors. Advanced Materials, 2019, 31, e1807029.	11.1	39
137	Color-Tunable Electroluminescent Polymers by Substitutents on the Poly(p-phenylenevinylene) Derivatives for Light-Emitting Diodes. Chemistry of Materials, 2002, 14, 5090-5097.	3.2	37
138	Influence of Anatase–Rutile Phase Transformation on Dielectric Properties of Sol–Gel Derived TiO2Thin Films. Japanese Journal of Applied Physics, 2005, 44, 6148-6151.	0.8	37
139	The effect of introducing a buffer layer to polymer solar cells on cell efficiency. Solar Energy Materials and Solar Cells, 2011, 95, 1119-1122.	3.0	37
140	Simultaneous Enhancement of Solar Cell Efficiency and Photostability via Chemical Tuning of Electron Donating Units in Diketopyrrolopyrrole-Based Push–Pull Type Polymers. Macromolecules, 2014, 47, 6270-6280.	2.2	37
141	A thermally stable, barium-stabilized α-CsPbI ₃ perovskite for optoelectronic devices. Journal of Materials Chemistry A, 2019, 7, 21740-21746.	5.2	37
142	Bandgap Tailored Nonfullerene Acceptors for Low-Energy-Loss Near-Infrared Organic Photovoltaics. , 2020, 2, 395-402.		37
143	Organic photovoltaic cells based on conjugated polymer/fullerene composites. Current Applied Physics, 2001, 1, 139-143.	1.1	36
144	Highly Stable Bulk Perovskite for Blue LEDs with Anion-Exchange Method. Nano Letters, 2021, 21, 3473-3479.	4.5	36

#	Article	IF	CITATIONS
145	Surfaceâ€Tailored Medium Entropy Alloys as Radically Low Overpotential Oxygen Evolution Electrocatalysts. Small, 2022, 18, e2105611.	5.2	36
146	Indiumâ^'Tinâ^'Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices. Journal of Physical Chemistry C, 2009, 113, 7443-7447.	1.5	35
147	Highly Efficient Red-Emitting Hybrid Polymer Light-Emitting Diodes via Förster Resonance Energy Transfer Based on Homogeneous Polymer Blends with the Same Polyfluorene Backbone. ACS Applied Materials & Interfaces, 2013, 5, 5690-5695.	4.0	35
148	Photovoltaic properties of high efficiency plastic dye-sensitized solar cells employing interparticle binding agent "nanoglue― Nanoscale, 2013, 5, 4711.	2.8	35
149	Enhanced Photovoltaic Properties and Long-Term Stability in Plasmonic Dye-Sensitized Solar Cells via Noncorrosive Redox Mediator. ACS Applied Materials & Interfaces, 2014, 6, 19191-19200.	4.0	35
150	High-Resolution Filtration Patterning of Silver Nanowire Electrodes for Flexible and Transparent Optoelectronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 32154-32162.	4.0	35
151	Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO ₂ Nanorods Decorated by Edgeâ€Rich MoS ₂ Nanoplates. Small, 2021, 17, e2103457.	5.2	35
152	Photovoltaic effects on the organic ambipolar field-effect transistors. Applied Physics Letters, 2007, 90, 063511.	1.5	34
153	Improved electron injection in polymer light-emitting diodes using anionic conjugated polyelectrolyte. Applied Physics Letters, 2008, 93, .	1.5	34
154	Replacing the metal oxide layer with a polymer surface modifier for high-performance inverted polymer solar cells. RSC Advances, 2014, 4, 4791-4795.	1.7	34
155	Solvent-free synthesis of Cu2ZnSnS4 nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells. Nanoscale, 2014, 6, 11703-11711.	2.8	34
156	1-D Structured Flexible Supercapacitor Electrodes with Prominent Electronic/Ionic Transport Capabilities. ACS Applied Materials & Interfaces, 2014, 6, 268-274.	4.0	34
157	Thienoisoindigo (TIIG)-based small molecules for the understanding of structure–property–device performance correlations. Journal of Materials Chemistry A, 2015, 3, 9899-9908.	5.2	33
158	Photophysical pathways in efficient bilayer organic solar cells: The importance of interlayer energy transfer. Nano Energy, 2021, 84, 105924.	8.2	33
159	Enhanced photovoltaic properties of overlayer-coated nanocrystalline TiO2 dye-sensitized solar cells (DSSCs). Journal of Electroceramics, 2009, 23, 422-425.	0.8	32
160	High-yield synthesis of single-crystal silicon nanoparticles as anode materials of lithium ion batteries via photosensitizer-assisted laser pyrolysis. Journal of Materials Chemistry A, 2014, 2, 18070-18075.	5.2	32
161	Multilayer bipolar field-effect transistors. Applied Physics Letters, 2008, 92, 063505.	1.5	31
162	Effect of Boron Precipitation Behavior on the Hot Ductility of Boron Containing Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1421-1428.	1.1	31

Jin Young Kim

#	Article	IF	CITATIONS
163	Towards optimization of P3HT:bisPCBM composites for highly efficient polymer solar cells. Journal of Materials Chemistry, 2010, 20, 7710.	6.7	31
164	Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. Synthetic Metals, 2012, 162, 1169-1176.	2.1	31
165	Ultrafast Charge Transfer in Operating Bulk Heterojunction Solar Cells. Advanced Materials, 2015, 27, 2036-2041.	11.1	31
166	Functionalized PFN-X (X = Cl, Br, or I) for Balanced Charge Carriers of Highly Efficient Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 35740-35747.	4.0	31
167	A Newly Designed Nb-Doped TiO ₂ /Al-Doped ZnO Transparent Conducting Oxide Multilayer for Electrochemical Photoenergy Conversion Devices. Journal of Physical Chemistry C, 2010, 114, 13867-13871.	1.5	30
168	Binder-Free Cu–In Alloy Nanoparticles Precursor and Their Phase Transformation to Chalcogenides for Solar Cell Applications. Journal of Physical Chemistry C, 2013, 117, 11930-11940.	1.5	30
169	Naphthalene diimide-based small molecule acceptors for fullerene-free organic solar cells. Solar Energy, 2017, 150, 90-95.	2.9	30
170	Thermally Durable Nonfullerene Acceptor with Nonplanar Conjugated Backbone for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2020, 10, 1903585.	10.2	30
171	Enhancing photocatalytic activity by using TiO2–MgO core-shell-structured nanoparticles. Applied Physics Letters, 2006, 88, 013107.	1.5	29
172	Aligned Photoelectrodes with Large Surface Area Prepared by Pulsed Laser Deposition. Journal of Physical Chemistry C, 2012, 116, 8102-8110.	1.5	29
173	High mobility solution-processed hybrid light emitting transistors. Applied Physics Letters, 2014, 105, 183302.	1.5	29
174	Straight chain D–A copolymers based on thienothiophene and benzothiadiazole for efficient polymer field effect transistors and photovoltaic cells. Polymer Chemistry, 2016, 7, 4638-4646.	1.9	29
175	Machine learning-assisted development of organic photovoltaics <i>via</i> high-throughput <i>in situ</i> formulation. Energy and Environmental Science, 2021, 14, 3438-3446.	15.6	29
176	Rational Design of Dimensionally Stable Anodes for Active Chlorine Generation. ACS Catalysis, 2021, 11, 12423-12432.	5.5	29
177	Control of Charge Dynamics via Use of Nonionic Phosphonate Chains and Their Effectiveness for Inverted Structure Solar Cells. Advanced Energy Materials, 2015, 5, 1500844.	10.2	28
178	Circularly Polarized Emission from Organic–Inorganic Hybrid Perovskites <i>via</i> Chiral Fano Resonances. ACS Nano, 2021, 15, 13781-13793.	7.3	28
179	Multifunctional nano-heterogeneous Ni(OH)2/NiFe catalysts on silicon photoanode toward efficient water and urea oxidation. Applied Catalysis B: Environmental, 2022, 317, 121765.	10.8	28
180	Roles of MgO Coating Layer on Mesoporous TiO ₂ /ITO Electrode in a Photoelectrochemical Cell for Water Splitting. Journal of Physical Chemistry C, 2008, 112, 9937-9942.	1.5	27

#	Article	IF	CITATIONS
181	Reversible change in electrical and optical properties in epitaxially grown Al-doped ZnO thin films. Journal of Applied Physics, 2008, 104, .	1.1	27
182	Copolymers Comprising 2,7â€Carbazole and Bisâ€benzothiadiazole Units for Bulkâ€Heterojunction Solar Cells. Chemistry - A European Journal, 2011, 17, 14681-14688.	1.7	27
183	Replacing 2,1,3-benzothiadiazole with 2,1,3-naphthothiadiazole in PCDTBT: towards a low bandgap polymer with deep HOMO energy level. Polymer Chemistry, 2012, 3, 3276.	1.9	27
184	Trend of Perovskite Solar Cells: Dig Deeper to Build Higher. Journal of Physical Chemistry Letters, 2015, 6, 2315-2317.	2.1	27
185	Monolithic DSSC/CIGS tandem solar cell fabricated by a solution process. Scientific Reports, 2015, 5, 8970.	1.6	27
186	Optimal top electrodes for inverted polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 2152-2159.	1.3	27
187	Enhanced electrical properties of Li–doped NiO x hole extraction layer in p–i–n type perovskite solar cells. Current Applied Physics, 2018, 18, S55-S59.	1.1	27
188	Unfolding the Influence of Metal Doping on Properties of CsPbI ₃ Perovskite. Small Methods, 2020, 4, 2000296.	4.6	27
189	Optical and surface probe investigation of secondary phases in Cu 2 ZnSnS 4 films grown by electrochemical deposition. Solar Energy Materials and Solar Cells, 2015, 139, 10-18.	3.0	26
190	Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polymer Chemistry, 2016, 7, 4036-4045.	1.9	26
191	Improved interfacial properties of electrodeposited Cu ₂ ZnSn(S,Se) ₄ thinâ€film solar cells by a facile postâ€heat treatment process. Progress in Photovoltaics: Research and Applications, 2020, 28, 1345-1354.	4.4	26
192	Defect-Induced <i>in Situ</i> Atomic Doping in Transition Metal Dichalcogenides via Liquid-Phase Synthesis toward Efficient Electrochemical Activity. ACS Nano, 2020, 14, 17114-17124.	7.3	26
193	Fabrication of gold dot, ring, and corpuscle arrays from block copolymer templates via a simple modification of surface energy. Nanoscale, 2011, 3, 5007.	2.8	25
194	Synthesis and characterization of a bis-methanofullerene-4-nitro-α-cyanostilbene dyad as a potential acceptor for high-performance polymer solar cells. Tetrahedron, 2012, 68, 6696-6700.	1.0	25
195	Acid-functionalized fullerenes used as interfacial layer materials in inverted polymer solar cells. Organic Electronics, 2013, 14, 3138-3145.	1.4	25
196	Underwater Organic Solar Cells via Selective Removal of Electron Acceptors near the Top Electrode. ACS Energy Letters, 2019, 4, 1034-1041.	8.8	25
197	High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports, 2020, 10, 18055.	1.6	25
198	Effects of Acetic Acid on the Crystallization Temperature of Sol-Gel-Derived MgO Nano-Powders and Thin Films. Journal of the American Ceramic Society, 2005, 88, 784-787.	1.9	24

#	Article	IF	CITATIONS
199	A First Approach to White Organic Electroluminescence Device from a Single Rodâ€Coil Poly[thiopheneâ€ <i>block</i> â€{ <i>N</i> â€vinylcarbazole)] Diblock Copolymer. Macromolecular Rapid Communications, 2010, 31, 2047-2052.	2.0	24
200	Evolution of Langmuir Film of Nanoparticles Through Successive Compression Cycles. Small, 2011, 7, 2526-2532.	5.2	24
201	Highly dense and crystalline CuInSe2 thin films prepared by single bath electrochemical deposition. Electrochimica Acta, 2013, 87, 450-456.	2.6	24
202	Ternary Halide Perovskites for Highly Efficient Solution-Processed Hybrid Solar Cells. ACS Energy Letters, 2016, 1, 712-718.	8.8	24
203	Efficiency Exceeding 11% in Tandem Polymer Solar Cells Employing High Openâ€Circuit Voltage Wideâ€Bandgap Ï€â€Conjugated Polymers. Advanced Energy Materials, 2017, 7, 1700782.	10.2	24
204	Enhanced open circuit voltage by hydrophilic ionic liquids as buffer layer in conjugated polymer–nanoporous titania hybrid solar cells. Physical Chemistry Chemical Physics, 2010, 12, 15309.	1.3	23
205	Compositional and Interfacial Modification of Cu ₂ ZnSn(S,Se) ₄ Thinâ€Film Solar Cells Prepared by Electrochemical Deposition. ChemSusChem, 2016, 9, 439-444.	3.6	23
206	Electrodeposited Heterogeneous Nickel-Based Catalysts on Silicon for Efficient Sunlight-Assisted Water Splitting. Cell Reports Physical Science, 2020, 1, 100219.	2.8	23
207	Surfactant-Assisted Shape Evolution of Thermally Synthesized TiO ₂ Nanocrystals and Their Applications to Efficient Photoelectrodes. Langmuir, 2008, 24, 4316-4319.	1.6	22
208	Colloidal Solution-Processed CuInSe ₂ Solar Cells with Significantly Improved Efficiency up to 9% by Morphological Improvement. ACS Applied Materials & Interfaces, 2014, 6, 259-267.	4.0	22
209	Structural and morphological tuning of dithienobenzodithiophene-core small molecules for efficient solution processed organic solar cells. Dyes and Pigments, 2015, 115, 23-34.	2.0	22
210	Effect of Interfacial Layers on the Device Lifetime of Perovskite Solar Cells. Small Methods, 2020, 4, 2000065.	4.6	22
211	High-Performance Perovskite Light-Emitting Diodes with Surface Passivation of CsPbBr <i>_x</i> I _{3–<i>x</i>} Nanocrystals via Antisolvent-Triggered Ion-Exchange. ACS Applied Materials & Interfaces, 2020, 12, 31582-31590.	4.0	22
212	Inverted Polymer Solar Cells with Annealingâ€Free Solutionâ€Processable NiO. Small, 2021, 17, e2101729.	5.2	22
213	Rapid sintering of TiO2 photoelectrodes using intense pulsed white light for flexible dye-sensitized solar cells. Applied Physics Letters, 2014, 104, .	1.5	21
214	Size tailoring of aqueous germanium nanoparticle dispersions. Nanoscale, 2014, 6, 10156-10160.	2.8	21
215	Anomalous potential dependence of conducting property in black titania nanotube arrays for electrocatalytic chlorine evolution. Journal of Catalysis, 2020, 381, 462-467.	3.1	21
216	Dithienogermole-Based Nonfullerene Acceptors: Roles of the Side-Chains' Direction and Development of Green-Tinted Efficient Semitransparent Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 7689-7698.	2.5	21

#	Article	IF	CITATIONS
217	Synthesis of nano-sized MgO particle and thin film from diethanolamine-stabilized magnesium-methoxide. Journal of Solid State Chemistry, 2003, 175, 278-283.	1.4	20
218	Voltage-Tunable Dielectric Properties of Pyrochlore Bi–Zn–Nb–Ti–O Solid-Solution Thin Films. Japanese Journal of Applied Physics, 2005, 44, 6648-6653.	0.8	20
219	Effects of Cu2â°'xS phase removal on surface potential of Cu2ZnSnS4 thin-films grown by electroplating. Current Applied Physics, 2014, 14, 1665-1668.	1.1	20
220	Improved Performance in nâ€Type Organic Fieldâ€Effect Transistors via Polyelectrolyteâ€Mediated Interfacial Doping. Advanced Electronic Materials, 2017, 3, 1700184.	2.6	20
221	A donor–acceptor semiconducting polymer with a random configuration for efficient, green-solvent-processable flexible solar cells. Journal of Materials Chemistry A, 2018, 6, 24580-24587.	5.2	20
222	Improved performance of polymer light-emitting diodes with nanocomposites. Applied Physics Letters, 2009, 94, .	1.5	19
223	Solution-processed CdS transistors with high electron mobility. RSC Advances, 2014, 4, 3153-3157.	1.7	19
224	Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends. Scientific Reports, 2014, 4, 7154.	1.6	19
225	Highly efficient polymer solar cells with a thienopyrroledione and benzodithiophene containing planar random copolymer. Polymer Chemistry, 2018, 9, 1216-1222.	1.9	19
226	Synthesis and characterization of fluorene-carbazole and fluorene-phenothiazine copolymers with carbazole and oxadiazole pendants for organic light emitting diodes. Polymer, 2010, 51, 6174-6181.	1.8	18
227	Enhanced performance of polymer bulk heterojunction solar cells employing multifunctional iridium complexes. Journal of Materials Chemistry C, 2014, 2, 10195-10200.	2.7	18
228	Synergistic photocurrent addition in hybrid quantum dot: Bulk heterojunction solar cells. Nano Energy, 2015, 13, 491-499.	8.2	18
229	Conjugated polymers containing 6-(2-thienyl)-4H-thieno[3,2-b]indole (TTI) and isoindigo for organic photovoltaics. Polymer, 2016, 95, 36-44.	1.8	18
230	A new small molecule acceptor based on indaceno[2,1-b:6,5-b']dithiophene and thiophene-fused ending group for fullerene-free organic solar cells. Dyes and Pigments, 2018, 148, 263-269.	2.0	17
231	Implementation of Lowâ€Power Electronic Devices Using Solutionâ€Processed Tantalum Pentoxide Dielectric. Advanced Functional Materials, 2018, 28, 1704215.	7.8	17
232	Roughness-Controlled Cu ₂ ZnSn(S,Se) ₄ Thin-Film Solar Cells with Reduced Charge Recombination. ACS Applied Materials & Interfaces, 2019, 11, 24088-24095.	4.0	17
233	Multifunctional Conjugated Polymers with Mainâ€Chain Donors and Sideâ€Chain Acceptors for Dye Sensitized Solar Cells (DSSCs) and Organic Photovoltaic Cells (OPVs). Macromolecular Rapid Communications, 2011, 32, 1809-1814.	2.0	16
234	Carrier Lifetime Extension via the Incorporation of Robust Hole/Electron Blocking Layers in Bulk Heterojunction Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 333-339.	4.0	16

#	Article	IF	CITATIONS
235	Influences of Extended Selenization on Cu ₂ ZnSnSe ₄ Solar Cells Prepared from Quaternary Nanocrystal Ink. Journal of Physical Chemistry C, 2014, 118, 27657-27663.	1.5	16
236	Synthesis and properties of low band gap polymers based on thienyl thienoindole as a new electron-rich unit for organic photovoltaics. Polymer Chemistry, 2015, 6, 6011-6020.	1.9	16
237	Raman scattering studies of Cu2ZnSnS4 thin films: Local distribution of the secondary phase Cu2â°'x S and the effect of KCN etching on Cu2â°'x S. Journal of the Korean Physical Society, 2015, 66, 117-122.	0.3	16
238	Effect of Heterocyclic Anchoring Sequence on the Properties of Dithienogermole-Based Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7091-7099.	4.0	16
239	A Roundabout Approach to Control Morphological Orientation and Solarâ€Cell Performance by Modulating Sideâ€Chain Branching Position in Benzodithiopheneâ€Based Polymers. ChemPhysChem, 2015, 16, 1305-1314.	1.0	15
240	Benzodithiophene-thiophene-based photovoltaic polymers with different side-chains. Journal of Polymer Science Part A, 2015, 53, 854-862.	2.5	15
241	2,2-dimethyl-2H-benzimidazole based small molecules for organic solar cells. Macromolecular Research, 2015, 23, 214-222.	1.0	15
242	Molecular aggregation method for perovskite–fullerene bulk heterostructure solar cells. Journal of Materials Chemistry A, 2020, 8, 1326-1334.	5.2	15
243	Dichroic Sb 2 O 3 /Ag/Sb 2 O 3 Electrodes for Colorful Semitransparent Organic Solar Cells. Solar Rrl, 2020, 4, 2000201.	3.1	15
244	The influence of tetrakis-ethylhexyloxy groups substituted in PPV derivative for PLEDs. Polymer, 2008, 49, 467-473.	1.8	14
245	Dexamethasone conjugation to polyamidoamine dendrimers G1 and G2 for enhanced transfection efficiency with an anti-inflammatory effect. Journal of Drug Targeting, 2012, 20, 667-677.	2.1	14
246	Correlation between Polymer Structure and Polymer:Fullerene Blend Morphology and Its Implications for High Performance Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 2237-2244.	1.5	14
247	Trifluoromethyl benzimidazole-based conjugated polymers with deep HOMO levels for organic photovoltaics. Synthetic Metals, 2015, 205, 112-120.	2.1	14
248	Roll-to-roll compatible quinoxaline-based polymers toward high performance polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 25208-25216.	5.2	14
249	Effects on Photovoltaic Characteristics by Organic Bilayer- and Bulk-Heterojunctions: Energy Losses, Carrier Recombination and Generation. ACS Applied Materials & Interfaces, 2020, 12, 55945-55953.	4.0	14
250	Monolithic all-perovskite tandem solar cells: recent progress and challenges. Journal of the Korean Ceramic Society, 2021, 58, 399-413.	1.1	14
251	Human selenophosphate synthetase 1 has five splice variants with unique interactions, subcellular localizations and expression patterns. Biochemical and Biophysical Research Communications, 2010, 397, 53-58.	1.0	13
252	Synthesis of the pyrrolo[3,2-b]pyrrole-based copolymer with enhanced open circuit voltage. Synthetic Metals, 2012, 162, 2288-2293.	2.1	13

#	Article	IF	CITATIONS
253	Synthesis of phenanthro[1,10,9,8- <i>cdefg</i>]carbazole-based conjugated polymers for organic solar cell applications. Journal of Polymer Science Part A, 2014, 52, 796-803.	2.5	13
254	Capacity retention behavior and morphology evolution of Si <i>_x</i> Ge _{1â^'<i>x</i>} nanoparticles as lithium-ion battery anode. Nanotechnology, 2015, 26, 255702.	1.3	13
255	Ambient-Stable Cubic-Phase Hybrid Perovskite Reaching the Shockley–Queisser Fill Factor Limit via Inorganic Additive-Assisted Process. ACS Applied Energy Materials, 2018, 1, 5865-5871.	2.5	13
256	Observation of ambipolar field-effect behavior in donor–acceptor conjugated copolymers. Journal of Materials Chemistry, 2012, 22, 21238.	6.7	12
257	2,5-di(thiophen-2-yl)thiazolo[5,4-d]thiazole-based donor–acceptor type copolymers for photovoltaic cells. Current Applied Physics, 2012, 12, 11-16.	1.1	12
258	Silicon nanoparticle size-dependent open circuit voltage in an organic–inorganic hybrid solar cell. Current Applied Physics, 2014, 14, 127-131.	1.1	12
259	Conjugated Polyelectrolytes Bearing Various Ion Densities: Spontaneous Dipole Generation, Polingâ€Induced Dipole Alignment, and Interfacial Energy Barrier Control for Optoelectronic Device Applications. Advanced Materials, 2018, 30, e1706034.	11.1	12
260	The introduction of a perovskite seed layer for high performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 20138-20144.	5.2	12
261	Electrochemical approach for preparing conformal methylammonium lead iodide layer. Electrochemistry Communications, 2019, 103, 120-126.	2.3	12
262	Synthesis and properties of polyfluorene, containing oxadiazole and carbazole units as pendants for white light-emitting diodes. Thin Solid Films, 2008, 516, 7373-7380.	0.8	11
263	High-efficiency, hybrid Si/C60 heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 16410-16417.	5.2	11
264	Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells. Scientific Reports, 2016, 6, 36608.	1.6	11
265	Influence of the Crystalline Nature of Small Donors Molecules on the Efficiency and Stability of Organic Photovoltaic Devices. Solar Rrl, 2018, 2, 1700235.	3.1	11
266	Photovoltaic powered solar hydrogen production coupled with waste SO2 valorization enabled by MoP electrocatalysts. Applied Catalysis B: Environmental, 2022, 305, 121045.	10.8	11
267	Correlation between dispersion properties of TiO2 colloidal sols and photoelectric characteristics of TiO2 films. Journal of Colloid and Interface Science, 2004, 279, 479-483.	5.0	10
268	Effects of film and substrate dimensions on warpage of film insert molded parts. Polymer Engineering and Science, 2010, 50, 1205-1213.	1.5	10
269	Pyrrolo[3,2-b]pyrrole based small molecules as donor materials for OPVs. Solar Energy Materials and Solar Cells, 2013, 112, 120-126.	3.0	10
270	Effect of asymmetric solubility of diketopyrrolopyrrole-based polymers and PC71BMs in a binary solvent system on the performance of bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2014, 124, 232-240.	3.0	10

Jin Young Kim

#	Article	IF	CITATIONS
271	Enhancement of Organic Photovoltaic Efficiency via Nanomorphology Control using Conjugated Polymers Incorporating Fullerene Compatible Side-Chains. Macromolecules, 2015, 48, 337-345.	2.2	10
272	Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer. RSC Advances, 2018, 8, 24110-24115.	1.7	10
273	Importance of interface engineering between the hole transport layer and the indium-tin-oxide electrode for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 15394-15403.	5.2	10
274	Fullerene-Based Photoactive A-D-A Triads for Single-Component Organic Solar Cells: Incorporation of Non-Fused Planar Conjugated Core. Macromolecular Research, 2021, 29, 871-881.	1.0	10
275	Improved spectral response of sensitized photoelectrodes with the optical modulation layer. Electrochemistry Communications, 2012, 15, 29-33.	2.3	9
276	Structural, Optical, Surface Morphological and Electrical Properties of Cu2ZnSnS4 Thin Film Synthesized by Drop Casting Technique. Zeitschrift Fur Physikalische Chemie, 2014, 228, .	1.4	9
277	Production of pristine, sulfur-coated and silicon-alloyed germanium nanoparticles via laser pyrolysis. Nanotechnology, 2015, 26, 305703.	1.3	9
278	High-density Cu–In intermetallic nanocrystal layers: towards high-efficiency printable CuInSe ₂ solar cells. Journal of Materials Chemistry A, 2015, 3, 15889-15896.	5.2	9
279	Modeling and implementation of tandem polymer solar cells using wideâ€bandgap front cells. , 2020, 2, 131-142.		9
280	Waterproof perovskites: high fluorescence quantum yield and stability from a methylammonium lead bromide/formate mixture in water. Journal of Materials Chemistry C, 2020, 8, 5873-5881.	2.7	9
281	Exploiting Ternary Blends to Accurately Control the Coloration of Semitransparent, Nonâ€Fullerene, Organic Solar Cells. Solar Rrl, 2021, 5, 2000742.	3.1	9
282	Relationship between the crystallization behavior and the warpage of filmâ€insertâ€molded parts. Journal of Applied Polymer Science, 2011, 120, 1539-1546.	1.3	8
283	Synthesis and photovoltaic properties of copolymers based on 2,2-(1,5-pentamethylene)-2H-benzimidazole. Synthetic Metals, 2012, 162, 225-230.	2.1	8
284	A simultaneous achievement of high performance and extended thermal stability of bulk-heterojunction polymer solar cells using a polythiophene–fullerene block copolymer. Solar Energy Materials and Solar Cells, 2012, 104, 7-12.	3.0	8
285	Synthesis of the novel 2,2-bithiophene-3,3-dicarboximide-based conjugated copolymers for OPVs. Synthetic Metals, 2013, 177, 65-71.	2.1	8
286	Reversed organic–inorganic hybrid tandem solar cells for improved interfacial series resistances and balanced photocurrents. Synthetic Metals, 2013, 175, 103-107.	2.1	8
287	Dithieno[2,3â€d:2',3'â€d']benzo[1,2â€b:4,5â€b']dithiophene (DTBDAT)â€based copolymers for highâ€performa organic solar cells. Journal of Polymer Science Part A, 2016, 54, 3182-3192.	nce 2.5	8
288	Suppressed Formation of Conductive Phases in One-Pot Electrodeposited CuInSe ₂ by Tuning Se Concentration in Aqueous Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 24585-24593.	4.0	8

#	Article	IF	CITATIONS
289	Photovoltaic polymers based on difluoroqinoxaline units with deep <scp>HOMO</scp> levels. Journal of Polymer Science Part A, 2018, 56, 1489-1497.	2.5	8
290	Twisted Linker Effect on Naphthalene Diimideâ€Based Dimer Electron Acceptors for Nonâ€fullerene Organic Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1800108.	2.0	8
291	Silicon Nanocanyon: One-Step Bottom-Up Fabrication of Black Silicon via in-Lasing Hydrophobic Self-Clustering of Silicon Nanocrystals for Sustainable Optoelectronics. ACS Applied Materials & Interfaces, 2018, 10, 36523-36530.	4.0	8
292	Elimination of Charge Transfer Energy Loss by Introducing a Small-Molecule Secondary Donor into Fullerene-Based Polymer Solar Cells. ACS Applied Energy Materials, 2020, 3, 8375-8382.	2.5	8
293	Planar Organic Bilayer Heterojunctions Fabricated on Water with Ultrafast Donorâ€ŧoâ€Acceptor Charge Transfer. Solar Rrl, 2021, 5, 2100326.	3.1	8
294	Fullerene-Based Triads with Controlled Alkyl Spacer Length as Photoactive Materials for Single-Component Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 43174-43185.	4.0	8
295	Bifunctional Graphene Oxide Hole-Transporting and Barrier Layers for Transparent Bifacial Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 8824-8831.	2.5	8
296	A Thin In ₂ S ₃ Interfacial Layer for Reducing Defects and Roughness of Cu ₂ ZnSn(S,Se) ₄ Thinâ€Film Solar Cells. ChemSusChem, 2022, 15, .	3.6	8
297	Nanoscale continuous In2O3 coating on phosphor particles for improved low-voltage cathodoluminescent properties. Journal of Materials Research, 2003, 18, 1505-1508.	1.2	7
298	Low bandgap small molecules based on 2,2-bithiophene-3,3-dicarboximide for soluble-processed solar cells. Synthetic Metals, 2013, 183, 16-23.	2.1	7
299	A hybrid solar cell fabricated using amorphous silicon and a fullerene derivative. Physical Chemistry Chemical Physics, 2013, 15, 19913.	1.3	7
300	Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]pyrrole and Benzothiadiazoleâ€Based Semicrystalline Copolymer for Photovoltaic Devices with Indeneâ€C ₆₀ Bisadduct. Macromolecular Chemistry and Physics, 2013, 214, 2083-2090.	or 1.1	7
301	Efficient snoring and breathing detection based on sub-band spectral statistics. Bio-Medical Materials and Engineering, 2015, 26, S787-S793.	0.4	7
302	Synergistic strategies for the preparation of highly efficient dye-sensitized solar cells on plastic substrates: combination of chemical and physical sintering. RSC Advances, 2015, 5, 76795-76803.	1.7	7
303	Designing a naphthyridinedione-based conjugated polymer for thickness-tolerant high efficiency polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 10846-10854.	5.2	7
304	Rationally Designed Window Layers for High Efficiency Perovskite/Si Tandem Solar Cells. Advanced Optical Materials, 2021, 9, 2100788.	3.6	7
305	Highly luminescent red-emitting In(Zn)P quantum dots using zinc oxo cluster: synthesis and application to light-emitting diodes. Nanoscale, 2022, 14, 2771-2779.	2.8	7
306	Dielectric properties of ZnNb2 O 6 -TiO 2 mixture thin films. Journal of Electroceramics, 2006, 17, 179-183.	0.8	6

#	Article	IF	CITATIONS
307	Electrical and optical properties of epitaxial and polycrystalline undoped and Al-doped ZnO thin films grown by pulsed laser deposition. Journal of Electroceramics, 2009, 23, 497-501.	0.8	6
308	Molecular engineering of conjugated polymers for solar cells and fieldâ€effect transistors: Sideâ€chain versus mainâ€chain electron acceptors. Journal of Polymer Science Part A, 2012, 50, 271-279.	2.5	6
309	ENHANCED INTERCONNECTION OF TiO ₂ NANOPARTICLES USING ATOMIC LAYER DEPOSITION FOR FLEXIBLE DYE-SENSITIZED SOLAR CELLS WITH PLASTIC SUBSTRATES. Nano, 2014, 09, 1440011.	0.5	6
310	Synthesis and photovoltaic properties of alkoxy-benzimidazole containing low band gap polymers. Thin Solid Films, 2015, 580, 29-35.	0.8	6
311	Solution-processed, inverted organic solar cells with bilayered inorganic/organic electron extraction layers. RSC Advances, 2016, 6, 36561-36567.	1.7	6
312	Effect of alkyl chain topology on the structure, optoelectronic properties and solar cell performance of thienopyrroledione-cored oligothiophene chromophores. RSC Advances, 2016, 6, 77655-77665.	1.7	6
313	Synthesis and photovoltaic properties of three different types of terpolymers. Materials Chemistry Frontiers, 2017, 1, 1147-1155.	3.2	6
314	ZnO decorated germanium nanoparticles as anode materials in Li-ion batteries. Nanotechnology, 2017, 28, 095402.	1.3	6
315	Semi-crystalline A1–D–A2-type copolymers for efficient polymer solar cells. Polymer Journal, 2017, 49, 141-148.	1.3	6
316	Exploiting transcriptomic data for metabolic engineering: toward a systematic strain design. Current Opinion in Biotechnology, 2018, 54, 26-32.	3.3	6
317	Non-halogenated diphenyl-chalcogenide solvent processing additives for high-performance polymer bulk-heterojunction solar cells. RSC Advances, 2018, 8, 39777-39783.	1.7	6
318	Morphological and Optical Engineering for High-Performance Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 4705-4711.	4.0	6
319	Synergistic combination of amorphous indium oxide with tantalum pentoxide for efficient electron transport in low-power electronics. Journal of Materials Chemistry C, 2019, 7, 4559-4566.	2.7	6
320	Syntheses and solar cell applications of conjugated copolymers containing tetrafluorophenylene units. Polymer, 2015, 71, 113-121.	1.8	5
321	2,1,3â€benzothiadiazoleâ€5,6â€dicarboxylicimide based semicrystalline polymers for photovoltaic cells. Journal of Polymer Science Part A, 2016, 54, 3826-3834.	2.5	5
322	Medium bandgap copolymers based on carbazole and quinoxaline exceeding 1.0 V open-circuit voltages. RSC Advances, 2016, 6, 17624-17631.	1.7	5
323	Positional Effect of the 2-Ethylhexyl Carboxylate Side Chain on the Thiophene π-Bridge of Nonfullerene Acceptors for Efficient Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 11675-11683.	2.5	5
324	Seed-layer mediated orientation evolution in dielectric Bi–Zn–Ti–Nb–O thin films. Applied Physics Letters, 2007, 91, 232903.	1.5	4

#	Article	IF	CITATIONS
325	Effects of Saccharin Intake on Hippocampal and Cortical Plasticity in Juvenile and Adolescent Rats. Korean Journal of Physiology and Pharmacology, 2010, 14, 113.	0.6	4
326	Synthesis and photovoltaic properties of conjugated copolymers based on benzimidazole and various thiophene. Journal of Polymer Science Part A, 2011, 49, 3751-3758.	2.5	4
327	Vapor Coating Method Using Small-Molecule Organic Surface Modifiers to Replace N-Type Metal Oxide Layers in Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 6504-6509.	4.0	4
328	2,7-Carbazole and thieno[3,4-c]pyrrole-4,6-dione based copolymers with deep highest occupied molecular orbital for photovoltaic cells. Current Applied Physics, 2015, 15, 654-661.	1.1	4
329	Syntheses of PCDTBT containing tetrafluorobenzene as electron-withdrawing group with deep HOMO energy level andÂapplications for photovoltaics. Polymer, 2016, 102, 84-91.	1.8	4
330	Synthesis and photovoltaic properties of benzimidazole-based copolymer with fluorine atom. Polymer Bulletin, 2016, 73, 2511-2519.	1.7	4
331	Reducing Burnâ€in Loss of Organic Photovoltaics by a Robust Electronâ€Transporting Layer. Advanced Materials Interfaces, 2019, 6, 1900213.	1.9	4
332	2D Starâ€Shaped Nonâ€Fullerene Electron Acceptors with Modulation of J…Hâ€Type Aggregations: Molecular Design–Morphology–Electrical Property Correlation. Advanced Materials Technologies, 2020, 5, 2000174.	3.0	4
333	Regioisomeric Polythiophene Derivatives: Synthesis and Structure-Property Relationships for Organic Electronic Devices. Macromolecular Research, 2020, 28, 772-781.	1.0	4
334	Substituent position-induced color tunability in polymer light-emitting diodes. Applied Physics Letters, 2002, 81, 1732-1734.	1.5	3
335	Influence of strain on the dielectric properties of Bi–Zn–Ti–Nb–O solid solution thin films. Journal of the European Ceramic Society, 2006, 26, 2161-2164.	2.8	3
336	Disruption of oral sensory relay to brain increased anxiety- and depression-like behaviours in rats. Archives of Oral Biology, 2013, 58, 1652-1658.	0.8	3
337	Syntheses and solar cell applications of conjugated copolymers consisting of 3,3′-dicarboximide and benzodithiophene units with thiophene and bithiophene linkage. Solar Energy Materials and Solar Cells, 2015, 141, 24-31.	3.0	3
338	Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains. Science China Chemistry, 2017, 60, 528-536.	4.2	3
339	Photovoltaic Devices: Slotâ€Die and Rollâ€toâ€Roll Processed Single Junction Organic Photovoltaic Cells with the Highest Efficiency (Adv. Energy Mater. 36/2019). Advanced Energy Materials, 2019, 9, 1970138.	10.2	3
340	Electrochemical Deposition of Conformal Semiconductor Layers in Nanoporous Oxides for Sensitized Photoelectrodes. ACS Omega, 2019, 4, 19772-19776.	1.6	3
341	Hydroxyl Groups in Demineralized Bone Matrix. Key Engineering Materials, 2007, 342-343, 381-384.	0.4	2
342	Photovoltaic performance of bifunctional low band gap conjugated copolymer. Current Applied Physics, 2012, 12, 531-533.	1.1	2

#	Article	IF	CITATIONS
343	Seeded solution growth of nanoparticles into ordered three-dimensional supracrystals. RSC Advances, 2013, 3, 10628.	1.7	2
344	Synthesis and TFT Properties of Fluorenyl Cored Conjugated Compound for Organic Thin Film Transistors. Journal of Nanoscience and Nanotechnology, 2016, 16, 2979-2982.	0.9	2
345	How Heteroatom Substitution in Donor–Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells. Journal of Physical Chemistry C, 0, , .	1.5	2
346	Substituent position-induced color tunability in polymer light-emitting diodes based on poly(p-phenylene vinylene) derivatives. Synthetic Metals, 2003, 137, 1011-1012.	2.1	1
347	Synthesis of the Copolymer Based on Diketopyrrolopyrrole with Didecyl Chain for OPVs. Molecular Crystals and Liquid Crystals, 2014, 600, 88-98.	0.4	1
348	Syntheses and Properties of Conjugated Polymer with Thiopheneâ€Bridged BTI and Indenoindene Units for Organic Solar Cells. Bulletin of the Korean Chemical Society, 2016, 37, 506-514.	1.0	1
349	Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu ₂ ZnSn(S,Se) ₄ Thin Film Solar Cells. Journal of Nanoscience and Nanotechnology, 2018, 18, 6437-6441.	0.9	1
350	Perovskites: Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications (Adv. Energy Mater. 30/2020). Advanced Energy Materials, 2020, 10, 2070129.	10.2	1
351	Synthesis and photovoltaic properties of organic molecules based on difluoroquinoxaline derivatives for OPVs. Molecular Crystals and Liquid Crystals, 2020, 705, 57-64.	0.4	1
352	Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO ₂ Nanorods Decorated by Edgeâ€Rich MoS ₂ Nanoplates (Small 39/2021). Small, 2021, 17, 2170206.	5.2	1
353	Inorganic charge transport materials for high reliable perovskite solar cells. Ceramist, 2020, 23, 145-165.	0.0	1
354	Preparation and characterization of ZnGa/sub 2/O/sub 4/ phosphor synthesized with an optimized combustion process. , 0, , .		0
355	New perspective in degradation mechanism of SrTiO3:Pr,Al,Ga phosphors. Journal of Materials Research, 2004, 19, 2694-2698.	1.2	0
356	Structure and dielectric properties of cubic Bi2(Zn1â^•3Ta2â^•3)2O7 thin films. Journal of Applied Physics, 2009, 106, .	1.1	0
357	Fabrication of Water Soluble Conjugated Polymers for WOLED. Molecular Crystals and Liquid Crystals, 2012, 567, 171-177.	0.4	0
358	Solar Cells: Device Architectures for Enhanced Photon Recycling in Thin-Film Multijunction Solar Cells (Adv. Energy Mater. 1/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	0
359	Solar Cells: Investigation of Charge Carrier Behavior in High Performance Ternary Blend Polymer Solar Cells (Adv. Energy Mater. 19/2016). Advanced Energy Materials, 2016, 6, .	10.2	0
360	Polyelectrolytes: Improved Performance in nâ€Type Organic Fieldâ€Effect Transistors via Polyelectrolyteâ€Mediated Interfacial Doping (Adv. Electron. Mater. 10/2017). Advanced Electronic Materials, 2017, 3, .	2.6	0

#	Article	IF	CITATIONS
361	Macromol. Rapid Commun. 14/2018. Macromolecular Rapid Communications, 2018, 39, 1870034.	2.0	Ο
362	Organic Photovoltaics: Study of Burnâ€In Loss in Green Solventâ€Processed Ternary Blended Organic Photovoltaics Derived from UVâ€Crosslinkable Semiconducting Polymers and Nonfullerene Acceptors (Adv. Energy Mater. 34/2019). Advanced Energy Materials, 2019, 9, 1970133.	10.2	0
363	Synthesis of Alkoxyaceneâ€Based Random Copolymers and Binary Solvent Additive for High Efficiency Organic Photovoltaics. Macromolecular Chemistry and Physics, 2019, 220, 1900409.	1.1	Ο
364	Design and synthesis of small molecules with difluoroquinoxaline units for OSCs. Molecular Crystals and Liquid Crystals, 2020, 705, 79-86.	0.4	0
365	Small molecules based difluoroquinoxaline for organic solar cells. Molecular Crystals and Liquid Crystals, 2021, 728, 45-51.	0.4	0
366	Bicuculline Ameliorated Chronic, but not Acute, Stress-Induced Feeding Suppression. International Journal of Pharmacology, 2015, 11, 335-342.	0.1	0