
Haowen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1315393/publications.pdf Version: 2024-02-01

HAOWENLLIL

#	Article	IF	CITATIONS
1	One-pot synthesis of ZnCo2O4 nanorod anodes for high power Lithium ions batteries. Electrochimica Acta, 2013, 92, 371-375.	5.2	94
2	A low temperature synthesis of nanocrystalline spinel NiFe2O4 and its electrochemical performance as anode of lithium-ion batteries. Materials Research Bulletin, 2013, 48, 1587-1592.	5.2	37
3	Preparing micro/nano dumbbell-shaped CeO2 for high performance electrode materials. Journal of Alloys and Compounds, 2016, 681, 342-349.	5.5	36
4	Hydrothermal Synthesis and Electrochemical Performance of MnCo2O4 Nanoparticles as Anode Material in Lithium-Ion Batteries. Journal of Electronic Materials, 2012, 41, 3107-3110.	2.2	29
5	Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method. Journal of Alloys and Compounds, 2016, 669, 1-7.	5.5	27
6	Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 814, 152348.	5.5	25
7	Rheological phase synthesis of nanosized α-LiFeO2 with higher crystallinity degree for cathode material of lithium-ion batteries. Materials Chemistry and Physics, 2016, 183, 152-157.	4.0	23
8	Preparing micro/nano core–shell sphere CeO2 via a low temperature route for improved lithium storage performance. Materials Letters, 2016, 168, 80-82.	2.6	21
9	Microwave-assisted hydrothermal synthesis of hollow flower-like Zn2V2O7 with enhanced cycling stability as electrode for lithium ion batteries. Materials Letters, 2018, 228, 369-371.	2.6	18
10	Synthesis of LiNi0.65Co0.25Mn0.1O2 as cathode material for lithium-ion batteries by rheological phase method. Journal of Alloys and Compounds, 2010, 506, 888-891.	5.5	17
11	Synthesis of Nanosize Quasispherical MgFe2O4 and Study of Electrochemical Properties as Anode of Lithium Ion Batteries. Journal of Electronic Materials, 2014, 43, 2553-2558.	2.2	16
12	A green and facile hydrothermal synthesis of γ-MnOOH nanowires as a prospective anode material for high power Li-ion batteries. Journal of Alloys and Compounds, 2019, 797, 334-340.	5.5	16
13	Core–shell CeO2 micro/nanospheres prepared by microwave-assisted solvothermal process as high-stability anodes for Li-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 291-295.	2.5	15
14	Facile synthesis of porous LiMn2O4 micro-/nano-hollow spheres with extremely excellent cycle stability as cathode of lithium-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 2617-2622.	2.5	15
15	One-pot synthesis and characterization of MnCO3 hierarchical micro/nano twin-spheres with superior lithium storage performances. Journal of Materials Science: Materials in Electronics, 2018, 29, 10117-10122.	2.2	13
16	A novel method for preparing lithium manganese oxide nanorods from nanorod precursor. Journal of Nanoparticle Research, 2010, 12, 301-305.	1.9	12
17	Influence of ZnO coating on the structure, morphology and electrochemical performances for LiNi1/3Co1/3Mn1/3O2 material. Russian Journal of Electrochemistry, 2011, 47, 156-160.	0.9	12
18	CeVO4 yolk-shell microspheres constructed by nanosheets with enhanced lithium storage performances. Journal of Alloys and Compounds, 2020, 849, 156682.	5.5	12

HAOWEN LIU

#	Article	IF	CITATIONS
19	Structure and electrochemical properties of Mg2SnO4 nanoparticles synthesized by a facile co-precipitation method. Materials Chemistry and Physics, 2015, 159, 167-172.	4.0	11
20	The synthesis, structure, and electrochemical properties of a novel rods-shaped Li6V10O28 for lithium-ion batteries. Ionics, 2010, 16, 379-383.	2.4	9
21	Submicron Li2MoO4 material prepared by rheological phase method and its evaluation of lithium storage performances. Ionics, 2017, 23, 2269-2273.	2.4	8
22	Novel secondary assembled micro/nano porous spheres ZnCo ₂ O ₄ with superior electrochemical performances as lithium ion anode material. Nanotechnology, 2018, 29, 325603.	2.6	8
23	A facile polymer-pyrolysis preparation of submicrometer CoMoO4 as an electrode of lithium ion batteries and supercapacitors. Ceramics International, 2021, 47, 11840-11847.	4.8	8
24	Controlled construction of hierarchical hollow micro/nano urchin-like β-MnO2 with superior lithium storage performance. Journal of Alloys and Compounds, 2019, 795, 336-342.	5.5	7
25	A quick microwave-assisted rheological phase reaction route for preparing Cu3Mo2O9 with excellent lithium storage and supercapacitor performance. Journal of Alloys and Compounds, 2021, 867, 159061.	5.5	7
26	Hollow spheres constructed from CeVO4 nanoparticles for enhanced lithium storage performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115159.	3.5	7
27	Synthesis of micro sphere CeO 2 by a chemical precipitation method with enhanced electrochemical performance. Materials Letters, 2017, 193, 115-118.	2.6	6
28	Metal-Perylene-3,4,9,10-Tetracarboxylate as a Promising Anode Material for Sodium Ion Batteries. Journal of Electronic Materials, 2019, 48, 5055-5061.	2.2	6
29	Self-Sacrificing Template Synthesis of Micro/Nano Spheres Ni6MnO8 as Electrode for High-Performance Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 110524.	2.9	6
30	Realizing stable electrochemical performance using MnNi2O4 micro/nano mesospheres prepared by self-template route. International Journal of Hydrogen Energy, 2022, 47, 7379-7387.	7.1	6
31	The Synthesis and Characterization of Cerium Carbonate Hydroxide Nanorods as an Anode for Lithium-Ion Batteries. Journal of Electronic Materials, 2018, 47, 1753-1756.	2.2	5
32	Porous MnCO3 hierarchical micro/nano cubes with superior lithium storage performances. Journal of Materials Science: Materials in Electronics, 2018, 29, 17859-17864.	2.2	5
33	Porous micro/nano Li2CeO3 with baseball morphology as anode material for high power lithium ions batteries. Solid State Ionics, 2019, 334, 82-86.	2.7	3
34	Rapid microwave preparation of Zn2(OH)3VO4 nanosheets with high lithium electroactivity. Ceramics International, 2019, 45, 18079-18083.	4.8	1
35	Uniform FeSnO(OH)5 submicrocubes: A promising anode for lithium ion batteries with high performance. Materials Letters, 2020, 279, 128484.	2.6	1
36	Preparation and the diffusion kinetic investigation of Zn3(OH)2V2O7·2H2O nanosheets anode for high performance lithium-ion battery. Journal of Materials Science: Materials in Electronics, 2020, 31, 14391-14399.	2.2	1

#	Article	IF	CITATIONS
37	Synthesis and electrochemical properties of regular hexahedron α-Fe2O3. Russian Journal of Electrochemistry, 2014, 50, 54-57.	0.9	0