Joel E Saylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1315351/publications.pdf

Version: 2024-02-01

206112 147801 3,220 61 31 48 citations h-index g-index papers 64 64 64 2576 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications, 2015, 6, 8511.	12.8	283
2	Quantifying comparison of large detrital geochronology data sets. , 2016, 12, 203-220.		217
3	Out of Tibet: Pliocene Woolly Rhino Suggests High-Plateau Origin of Ice Age Megaherbivores. Science, 2011, 333, 1285-1288.	12.6	164
4	Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 2010, 122, 1423-1442.	3.3	153
5	The late Miocene through present paleoelevation history of southwestern Tibet. Numerische Mathematik, 2009, 309, 1-42.	1.4	147
6	Integrated provenance analysis of a convergent retroarc foreland system: U–Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth-Science Reviews, 2012, 110, 111-126.	9.1	143
7	Tectonic Evolution of the Central Andean Plateau and Implications for the Growth of Plateaus. Annual Review of Earth and Planetary Sciences, 2017, 45, 529-559.	11.0	127
8	Unmixing detrital geochronology age distributions. Geochemistry, Geophysics, Geosystems, 2017, 18, 2872-2886.	2.5	124
9	Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures. Lithosphere, 2016, 8, 58-82.	1.4	123
10	Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, <scp>NE</scp> Tibetan Plateau. Basin Research, 2018, 30, 544-563.	2.7	102
11	Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau. Bulletin of the Geological Society of America, 2020, 132, 310-320.	3.3	94
12	Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 2012, 124, 762-779.	3.3	93
13	Mixing of Source Populations Recorded in Detrital Zircon U-Pb Age Spectra of Modern River Sands. Journal of Geology, 2013, 121, 17-33.	1.4	86
14	Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today, 2010, , 4-10.	2.0	81
15	Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history. Earth and Planetary Science Letters, 2009, 282, 1-9.	4.4	78
16	Application of detrital zircon U-Pb geochronology to surface and subsurface correlations of provenance, paleodrainage, and tectonics of the Middle Magdalena Valley Basin of Colombia. , 2015, 11 , 1790-1811.		78
17	Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth and Planetary Science Letters, 2014, 387, 120-131.	4.4	7 5
18	High late Miocene–Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry. Bulletin of the Geological Society of America, 2015, 127, 181-199.	3.3	70

#	Article	IF	CITATIONS
19	Tracking exhumation of Andean ranges bounding the Middle Magdalena Valley Basin, Colombia. Geology, 2010, 38, 451-454.	4.4	67
20	Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. , 2016, 12, 1235-1256.		67
21	Hyperspectral imaging for the determination of bitumen content in Athabasca oil sands core samples. AAPG Bulletin, 2015, 99, 1407-1453.	1.5	56
22	Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Scientific Reports, 2019, 9, 4877.	3.3	52
23	Evaluating foreland basin partitioning in the northern Andes using Cenozoic fill of the Floresta basin, Eastern Cordillera, Colombia. Basin Research, 2011, 23, 377-402.	2.7	49
24	Basin formation in the High Himalaya by arc-parallel extension and tectonic damming: Zhada basin, southwestern Tibet. Tectonics, 2010, 29, n/a-n/a.	2.8	47
25	Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-lce Age fauna, and mammalian evolution in western Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374, 81-95.	2.3	47
26	Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 2012, 39, 202-215.	1.4	46
27	Stable isotope variations (\hat{l} 180 and \hat{l} D) in modern waters across the Andean Plateau. Geochimica Et Cosmochimica Acta, 2016, 194, 310-324.	3.9	45
28	Paleoelevation records from lipid biomarkers: Application to the tropical Andes. Bulletin of the Geological Society of America, 2015, 127, 1604-1616.	3.3	42
29	Controls on the isotopic composition of surface water and precipitation in the Northern Andes, Colombian Eastern Cordillera. Geochimica Et Cosmochimica Acta, 2009, 73, 6999-7018.	3.9	39
30	Sources of local and regional variability in the MBT′/CBT paleotemperature proxy: Insights from a modern elevation transect across the Eastern Cordillera of Colombia. Organic Geochemistry, 2014, 69, 42-51.	1.8	38
31	Characterizing sediment sources by non-negative matrix factorization of detrital geochronological data. Earth and Planetary Science Letters, 2019, 512, 46-58.	4.4	36
32	Provenance of Pennsylvanian–Permian sedimentary rocks associated with the Ancestral Rocky Mountains orogeny in southwestern Laurentia: Implications for continental-scale Laurentian sediment transport systems. Lithosphere, 2020, 12, 88-121.	1.4	36
33	Temperature Control on Silicate Weathering Intensity and Evolution of the Neogene East Asian Summer Monsoon. Geophysical Research Letters, 2020, 47, e2020GL088808.	4.0	35
34	Punctuated shortening and subsidence in the Altiplano Plateau of southern Peru: Implications for early Andean mountain building. Lithosphere, 2015, 7, 117-137.	1.4	32
35	Provenance and recycling of detrital zircons from Cenozoic Altiplano strata and the crustal evolution of western South America from combined U-Pb and Lu-Hf isotopic analysis., 2019,, 363-397.		30
36	Climate-driven environmental change in the Zhada basin, southwestern Tibetan Plateau., 2010, 6, 74-92.		26

#	Article	IF	CITATIONS
37	Detrital-Zircon U-Pb Paleodrainage Reconstruction and Geochronology of the Campanian Blackhawk–Castlegate Succession, Wasatch Plateau and Book Cliffs, Utah, U.S.A Journal of Sedimentary Research, 2019, 89, 273-292.	1.6	23
38	Peruvian Altiplano Stratigraphy Highlights Alongâ€Strike Variability in Foreland Basin Evolution of the Cenozoic Central Andes. Tectonics, 2018, 37, 1876-1904.	2.8	20
39	Laramide Orogenesis Driven by Late Cretaceous Weakening of the North American Lithosphere. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019570.	3.4	19
40	Twoâ€Dimensional Quantitative Comparison of Density Distributions in Detrital Geochronology and Geochemistry. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009559.	2.5	19
41	Provenance Control on Chemical Weathering Index of Fluvioâ€Lacustrine Sediments: Evidence From the Qaidam Basin, NE Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 2019, 20, 3216-3224.	2.5	17
42	Tectonic and climate controls on Neogene environmental change in the Zhada Basin, southwestern Tibetan Plateau. Geology, 2016, 44, 919-922.	4.4	16
43	Tectonic controls on Late Cretaceous sediment provenance and stratigraphic architecture in the Book Cliffs, Utah. Bulletin of the Geological Society of America, 2018, 130, 1763-1781.	3.3	15
44	Crustal Thickening of the Northern Central Andean Plateau Inferred From Trace Elements in Zircon. Geophysical Research Letters, 2022, 49, .	4.0	14
45	Drainage reorganization and Laramide tectonics in northâ€central New Mexico and downstream effects in the Gulf of Mexico. Basin Research, 2020, 32, 419-452.	2.7	9
46	Tracking Proterozoic–Triassic sediment routing to western Laurentia via bivariate non-negative matrix factorization of detrital provenance data. Journal of the Geological Society, 2021, 178, .	2.1	6
47	Rapid surface uplift and crustal flow inÂthe Central Andes (southern Peru) controlled by lithospheric drip dynamics. Scientific Reports, 2022, 12, 5500.	3.3	6
48	Basin evolution in response to flat-slab subduction in the Altiplano. Journal of the Geological Society, 2022, 179, .	2.1	4
49	Megathrust Heterogeneity, Crustal Accretion, and a Topographic Embayment in the Western Nepal Himalaya: Insights From the Inversion of Thermochronological Data. Tectonics, 2022, 41, .	2.8	4
50	Discriminating mechanisms for coarse clastic progradation in the Colombian foreland basin using detrital zircon double dating., 2019,, 133-171.		3
51	Orbital Forcing of Late Miocene–Early Pleistocene Environmental Change in the Zhada Basin, SW Tibetan Plateau. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003781.	2.9	3
52	Detrital zircon geochronology and provenance of the Middle to Late Jurassic Paradox Basin and Central Colorado trough: Paleogeographic implications for southwestern Laurentia., 2021, 17, 1494-1516.		3
53	Effects of contemporaneous orogenesis on sedimentation in the Late Cretaceous Western Interior Basin, northern Utah and southwestern Wyoming. Basin Research, 2022, 34, 366-392.	2.7	3
54	Antiâ€Phase Strengthening of the South and East Asian Summer Monsoons During the Early Pliocene Driven by Southern Hemisphere Ice Volume. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004211.	2.9	1

#	Article	IF	CITATIONS
55	UNMIXING DETRITAL ZIRCON U-PB AGE DISTRIBUTIONS. , 2017, , .		1
56	CENTRAL COLORADO TROUGH SEDIMENT SOURCE ISOLATION: PETROCHRONOLOGIC SOURCE DISCRIMINATION APPLIED TO AN ANCESTRAL ROCKY MOUNTAIN BASIN. , 2019, , .		1
57	HINTERLAND BASIN GEODYNAMICS: IMPLICATIONS OF LU-HF AND U-PB ANALYSES OF ZIRCON FROM THE TINCOPALCA BASIN, PERU. , 2020, , .		1
58	LARAMIDE-DRIVEN EROSION, INTERMONTANE BASIN FILL, AND DRAINAGE REORGANIZATION IN NORTH-CENTRAL NEW MEXICO. , $2017, \dots$		0
59	THE TECTONIC EVOLUTION OF THE CENTRAL ANDEAN PLATEAU AND GEODYNAMIC IMPLICATIONS FOR THE GROWTH OF PLATEAUS. , $2017, , .$		0
60	HETEROGENEITY IN THE UNCOMPAHGRE UPLIFT REFLECTED IN PROXIMAL-DISTAL SEDIMENT MIXING IN THE PARADOX BASIN. , $2017, \dots$		0
61	Introduction to the special issue "Tibetan tectonics and its effect on the longâ€term evolution of climate, vegetation and environmentâ€. Terra Nova, 0, , .	2.1	0