Zhichuan J Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1315230/publications.pdf

Version: 2024-02-01

2125 1043 46,891 371 113 203 citations h-index g-index papers 385 385 385 41966 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020, 49, 2196-2214.	18.7	1,466
2	Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Advanced Materials, 2010, 22, 2729-2742.	11.1	1,260
3	Platinumâ^'Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithiumâ^'Air Batteries. Journal of the American Chemical Society, 2010, 132, 12170-12171.	6.6	1,171
4	Chemical and structural origin of lattice oxygen oxidation in Coâ€"Zn oxyhydroxide oxygen evolution electrocatalysts. Nature Energy, 2019, 4, 329-338.	19.8	977
5	Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. Journal of the American Chemical Society, 2007, 129, 8698-8699.	6.6	853
6	Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. Advanced Materials, 2019, 31, e1806296.	11.1	841
7	Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature Energy, 2019, 4, 408-415.	19.8	831
8	A Eu ³⁺ -Eu ²⁺ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 2019, 363, 265-270.	6.0	793
9	Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catalysis, 2014, 4, 1693-1705.	5 . 5	769
10	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
11	A Voltageâ€Boosting Strategy Enabling a Lowâ€Frequency, Flexible Electromagnetic Wave Absorption Device. Advanced Materials, 2018, 30, e1706343.	11.1	691
12	Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nature Catalysis, 2019, 2, 763-772.	16.1	678
13	Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. Journal of Materials Chemistry A, 2017, 5, 3039-3068.	5. 2	625
14	Black Phosphorus Quantum Dots. Angewandte Chemie - International Edition, 2015, 54, 3653-3657.	7.2	594
15	Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transitionâ€Metal Spinels. Advanced Materials, 2017, 29, 1606800.	11.1	525
16	Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 2009, 21, 1778-1780.	3.2	503
17	Enhancing the Stability of CH ₃ NH ₃ PbBr ₃ Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in "Waterless―Toluene. Journal of the American Chemical Society, 2016, 138, 5749-5752.	6.6	501
18	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	10.2	486

#	Article	IF	CITATIONS
19	Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chemical Society Reviews, 2019, 48, 2518-2534.	18.7	483
20	Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications. Advanced Functional Materials, 2019, 29, 1901236.	7.8	469
21	Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption. Nano-Micro Letters, 2019, 11, 24.	14.4	421
22	Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 9353-9378.	5.2	413
23	Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Letters, 2018, 10, 75.	14.4	412
24	Formation of Uniform Fe ₃ O ₄ Hollow Spheres Organized by Ultrathin Nanosheets and Their Excellent Lithium Storage Properties. Advanced Materials, 2015, 27, 4097-4101.	11.1	396
25	Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. Advanced Materials, 2021, 33, e2006328.	11.1	392
26	Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nature Communications, 2017, 8, 1138.	5.8	374
27	Encapsulating MWNTs into Hollow Porous Carbon Nanotubes: A Tubeâ€nâ€Tube Carbon Nanostructure for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Materials, 2014, 26, 5113-5118.	11.1	360
28	Highly Luminescent and Ultrastable CsPbBr ₃ Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angewandte Chemie - International Edition, 2017, 56, 8134-8138.	7.2	355
29	Enlarged CoO Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction. Advanced Materials, 2018, 30, e1802912.	11.1	338
30	Oneâ€Pot Synthesis of Highly Anisotropic Fiveâ€Foldâ€Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Advanced Materials, 2016, 28, 8712-8717.	11.1	336
31	Exploration of Crystallization Kinetics in Quasi Two-Dimensional Perovskite and High Performance Solar Cells. Journal of the American Chemical Society, 2018, 140, 459-465.	6.6	327
32	Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606774.	11.1	318
33	Morphology Evolution and Degradation of CsPbBr ₃ Nanocrystals under Blue Light-Emitting Diode Illumination. ACS Applied Materials & Interfaces, 2017, 9, 7249-7258.	4.0	314
34	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	8.3	308
35	A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. Journal of Materials Chemistry C, 2017, 5, 491-512.	2.7	305
36	Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon, 2003, 41, 2731-2736.	5.4	302

#	Article	IF	CITATIONS
37	Interface Polarization Strategy to Solve Electromagnetic Wave Interference Issue. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5660-5668.	4.0	300
38	A Flexible Microwave Shield with Tunable Frequencyâ€Transmission and Electromagnetic Compatibility. Advanced Functional Materials, 2019, 29, 1900163.	7.8	299
39	Tunneling Diode Based on WSe ₂ /SnS ₂ Heterostructure Incorporating High Detectivity and Responsivity. Advanced Materials, 2018, 30, 1703286.	11.1	293
40	Interface Strategy To Achieve Tunable High Frequency Attenuation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6529-6538.	4.0	285
41	Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nature Catalysis, 2020, 3, 554-563.	16.1	284
42	Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 6329-6332.	7.2	266
43	Surface Composition Tuning of Au–Pt Bimetallic Nanoparticles for Enhanced Carbon Monoxide and Methanol Electro-oxidation. Journal of the American Chemical Society, 2013, 135, 7985-7991.	6.6	266
44	Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nature Photonics, 2021, 15, 379-385.	15.6	260
45	Impact of Surface Area in Evaluation of Catalyst Activity. Joule, 2018, 2, 1024-1027.	11.7	258
46	Ultrathin Graphdiyne Nanosheets Grown Inâ€Situ on Copper Nanowires and Their Performance as Lithiumâ€ion Battery Anodes. Angewandte Chemie - International Edition, 2018, 57, 774-778.	7.2	257
47	Vertically oriented MoS ₂ and WS ₂ nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. Journal of Materials Chemistry A, 2015, 3, 131-135.	5.2	254
48	Tailoring the Co 3d-O 2p Covalency in LaCoO ₃ by Fe Substitution To Promote Oxygen Evolution Reaction. Chemistry of Materials, 2017, 29, 10534-10541.	3.2	254
49	Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nature Communications, 2019, 10, 572.	5.8	254
50	Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4259-4290.	5.2	249
51	Emerging inâ€plane anisotropic twoâ€dimensional materials. InformaÄnÃ-Materiály, 2019, 1, 54-73.	8.5	247
52	Fe/N/C hollow nanospheres by Fe(<scp>iii</scp>)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale, 2015, 7, 1501-1509.	2.8	242
53	Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications, 2021, 12, 2608.	5.8	242
54	Spinâ€Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2003297.	11.1	240

#	Article	IF	CITATIONS
55	Hydrogenation Driven Conductive Na ₂ Ti ₃ O ₇ Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries. Nano Letters, 2016, 16, 4544-4551.	4.5	235
56	A Flexible and Lightweight Biomass-Reinforced Microwave Absorber. Nano-Micro Letters, 2020, 12, 125.	14.4	234
57	Surface Composition Dependent Ligand Effect in Tuning the Activity of Nickel–Copper Bimetallic Electrocatalysts toward Hydrogen Evolution in Alkaline. Journal of the American Chemical Society, 2020, 142, 7765-7775.	6.6	234
58	Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions. Advanced Materials, 2008, 20, 4342-4347.	11.1	231
59	Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2ln2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Applied Catalysis B: Environmental, 2019, 245, 290-301.	10.8	229
60	Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides. Angewandte Chemie - International Edition, 2019, 58, 6042-6047.	7.2	226
61	Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties. Journal of Physical Chemistry B, 2005, 109, 23233-23236.	1.2	225
62	Superior Sodium Storage in Na ₂ Ti ₃ O ₇ Nanotube Arrays through Surface Engineering. Advanced Energy Materials, 2016, 6, 1502568.	10.2	219
63	2D GeP: An Unexploited Lowâ€Symmetry Semiconductor with Strong Inâ€Plane Anisotropy. Advanced Materials, 2018, 30, e1706771.	11.1	219
64	Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation. Advanced Materials, 2019, 31, e1807898.	11.1	215
65	Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering. Small, 2015, 11, 3221-3246.	5.2	208
66	Highâ€Rate and Ultralong Cycleâ€Life Potassium Ion Batteries Enabled by In Situ Engineering of Yolk–Shell FeS ₂ @C Structure on Graphene Matrix. Advanced Energy Materials, 2018, 8, 1802565.	10.2	207
67	Boosting Sodium Storage in TiO ₂ Nanotube Arrays through Surface Phosphorylation. Advanced Materials, 2018, 30, 1704337.	11.1	201
68	Significance of Engineering the Octahedral Units to Promote the Oxygen Evolution Reaction of Spinel Oxides. Advanced Materials, 2019, 31, e1902509.	11.1	201
69	Boosting Electrochemical CO ₂ Reduction on Metal–Organic Frameworks via Ligand Doping. Angewandte Chemie - International Edition, 2019, 58, 4041-4045.	7.2	199
70	Toward a Highâ€Performance Allâ€Plastic Full Battery with a'Single Organic Polymer as Both Cathode and Anode. Advanced Energy Materials, 2018, 8, 1703509.	10.2	189
71	Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nature Communications, 2018, 9, 2793.	5.8	189
72	Recent Progress on 2D Nobleâ€Transitionâ€Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1904932.	7.8	186

#	Article	IF	Citations
73	Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12, 3634.	5.8	186
74	Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe3O4) Nanoparticles via Trichloro-s-triazine. Chemistry of Materials, 2006, 18, 5401-5403.	3.2	185
75	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nature Communications, 2019, 10, 1112.	5 . 8	185
76	Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nature Communications, 2020, 11, 31.	5. 8	185
77	Graphitic C 3 N 4 modified by Ni 2 P cocatalyst: An efficient, robust and low cost photocatalyst for visible-light-driven H 2 evolution from water. Chemical Engineering Journal, 2017, 315, 296-303.	6.6	184
78	In Situ X-ray Absorption Spectroscopy Studies of Nanoscale Electrocatalysts. Nano-Micro Letters, 2019, 11, 47.	14.4	181
79	Magnetic Biochar Decorated with ZnS Nanocrytals for Pb (II) Removal. ACS Sustainable Chemistry and Engineering, 2015, 3, 125-132.	3.2	180
80	The Comprehensive Understanding of as an Evaluation Parameter for Electrochemical Water Splitting. Small Methods, 2018, 2, 1800168.	4.6	180
81	Fewâ€Layered PtS ₂ Phototransistor on hâ€BN with High Gain. Advanced Functional Materials, 2017, 27, 1701011.	7.8	176
82	Nanoengineered PtCo and PtNi Catalysts for Oxygen Reduction Reaction: An Assessment of the Structural and Electrocatalytic Properties. Journal of Physical Chemistry C, 2011, 115, 1682-1694.	1.5	173
83	An Airâ€Stable Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1600453.	10.2	167
84	Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. Journal of Molecular Catalysis A, 2005, 226, 123-127.	4.8	160
85	Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy, 2017, 41, 117-127.	8.2	159
86	Twoâ€Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binderâ€free Lithiumâ€ion Battery. ChemSusChem, 2020, 13, 2457-2463.	3.6	159
87	A Facile Synthesis of SmCo ₅ Magnets from Core/Shell Co/Sm ₂ O ₃ Nanoparticles. Advanced Materials, 2007, 19, 3349-3352.	11.1	157
88	Compositional dependence of the stability of AuCu alloy nanoparticles. Chemical Communications, 2012, 48, 5626.	2.2	153
89	Highly Luminescent and Ultrastable CsPbBr ₃ Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angewandte Chemie, 2017, 129, 8246-8250.	1.6	153
90	The intrinsic properties of FA _(1â°x) MA _x PbI ₃ perovskite single crystals. Journal of Materials Chemistry A, 2017, 5, 8537-8544.	5.2	152

#	Article	IF	Citations
91	Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nature Communications, 2021, 12, 3992.	5.8	151
92	Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon, 2016, 110, 130-137.	5.4	149
93	Submillimeter 2D Bi ₂ Se ₃ Flakes toward Highâ€Performance Infrared Photodetection at Optical Communication Wavelength. Advanced Functional Materials, 2018, 28, 1802707.	7.8	149
94	Engineering Highâ€Spin State Cobalt Cations in Spinel Zinc Cobalt Oxide for Spin Channel Propagation and Active Site Enhancement in Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 14536-14544.	7.2	149
95	Unconventional Mn Vacancies in Mn–Fe Prussian Blue Analogs: Suppressing Jahn-Teller Distortion for Ultrastable Sodium Storage. CheM, 2020, 6, 1804-1818.	5.8	148
96	Titanium dioxide doped polyaniline. Materials Science and Engineering C, 2005, 25, 444-447.	3.8	147
97	Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B, 2014, 23, 037503.	0.7	145
98	Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. Journal of Materials Chemistry A, 2020, 8, 24368-24387.	5.2	145
99	Fuel cell technology: nano-engineered multimetallic catalysts. Energy and Environmental Science, 2008, 1, 454.	15.6	144
100	A novel method for the sequential removal and separation of multiple heavy metals from wastewater. Journal of Hazardous Materials, 2018, 342, 617-624.	6.5	143
101	Superexchange Effects on Oxygen Reduction Activity of Edgeâ€haring [Co <i></i> Mn _{1â^'} <i></i> Oxide. Advanced Materials, 2018, 30, 1705407.	11.1	142
102	One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications, 2010, 46, 3920.	2.2	140
103	Highly Inâ€Plane Anisotropic 2D GeAs ₂ for Polarizationâ€Sensitive Photodetection. Advanced Materials, 2018, 30, e1804541.	11.1	140
104	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	10.2	139
105	Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An <i>in Situ</i> Soft X-ray Absorption Spectroscopy Study. Journal of Physical Chemistry C, 2017, 121, 17682-17692.	1.5	138
106	Novel Preparation of Nâ€Doped SnO ₂ Nanoparticles via Laserâ€Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties. Advanced Materials, 2017, 29, 1603286.	11.1	132
107	Bioinspired Multifunctional Vanadium Dioxide: Improved Thermochromism and Hydrophobicity. Langmuir, 2014, 30, 10766-10771.	1.6	131
108	Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 7418-7425.	7.2	130

#	Article	IF	CITATIONS
109	Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. Journal of Catalysis, 2017, 356, 14-21.	3.1	128
110	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	124
111	Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture. Advanced Materials, 2017, 29, 1605607.	11.1	122
112	Constructing an Adaptive Heterojunction as a Highly Active Catalyst for the Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e2001292.	11.1	122
113	CsI Preâ€Intercalation in the Inorganic Framework for Efficient and Stable FA _{1â^'< sub><i></i>PbI_{3< sub>(Cl) Perovskite Solar Cells. Small, 2017, 13, 1700484.}}	5.2	121
114	Effect of High Dipole Moment Cation on Layered 2D Organic–Inorganic Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803024.	10.2	117
115	Strong In-Plane Anisotropies of Optical and Electrical Response in Layered Dimetal Chalcogenide. ACS Nano, 2017, 11, 10264-10272.	7.3	116
116	Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Scientific Reports, 2016, 6, 19777.	1.6	115
117	Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. Journal of Power Sources, 2015, 274, 755-761.	4.0	114
118	Interlayer Coupling Induced Infrared Response in WS ₂ /MoS ₂ Heterostructures Enhanced by Surface Plasmon Resonance. Advanced Functional Materials, 2018, 28, 1800339.	7.8	114
119	2D Ternary Chalcogenides. Advanced Optical Materials, 2018, 6, 1800058.	3.6	114
120	Ultrathin MnO2 nanoflakes as efficient catalysts for oxygen reduction reaction. Chemical Communications, 2014, 50, 7885.	2.2	113
121	Ternary Ta ₂ NiSe ₅ Flakes for a Highâ€Performance Infrared Photodetector. Advanced Functional Materials, 2016, 26, 8281-8289.	7.8	112
122	Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems. Journal of Materials Chemistry A, 2014, 2, 15228.	5.2	108
123	A Multisite Strategy for Enhancing the Hydrogen Evolution Reaction on a Nanoâ€Pd Surface in Alkaline Media. Advanced Energy Materials, 2017, 7, 1701129.	10.2	108
124	Selfâ€Supported 3D Array Electrodes for Sodium Microbatteries. Advanced Functional Materials, 2018, 28, 1704880.	7.8	108
125	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. Angewandte Chemie - International Edition, 2020, 59, 9418-9422.	7.2	108
126	Antiferromagnetic Inverse Spinel Oxide LiCoVO ₄ with Spinâ€Polarized Channels for Water Oxidation. Advanced Materials, 2020, 32, e1907976.	11.1	106

#	Article	IF	CITATIONS
127	Hybrid Organic–Inorganic Materials and Composites for Photoelectrochemical Water Splitting. ACS Energy Letters, 2020, 5, 1487-1497.	8.8	104
128	Raw biomass electroreforming coupled to green hydrogen generation. Nature Communications, 2021, 12, 2008.	5.8	104
129	Biochemistry-Enabled 3D Foams for Ultrafast Battery Cathodes. ACS Nano, 2015, 9, 4628-4635.	7.3	102
130	A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells. Advanced Materials, 2019, 31, e1900390.	11.1	101
131	Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. Journal of Power Sources, 2015, 294, 112-119.	4.0	99
132	Persistent Conjugated Backbone and Disordered Lamellar Packing Impart Polymers with Efficient nâ€Doping and High Conductivities. Advanced Materials, 2021, 33, e2005946.	11.1	99
133	Valence Change Ability and Geometrical Occupation of Substitution Cations Determine the Pseudocapacitance of Spinel Ferrite XFe $<$ sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ (X = Mn, Co, Ni, Fe). Chemistry of Materials, 2016, 28, 4129-4133.	3.2	98
134	Postsynthesis Phase Transformation for CsPbBr ₃ /Rb ₄ PbBr ₆ Core/Shell Nanocrystals with Exceptional Photostability. ACS Applied Materials & Diterfaces, 2018, 10, 23303-23310.	4.0	98
135	1000 h Operational Lifetime Perovskite Solar Cells by Ambient Melting Encapsulation. Advanced Energy Materials, 2020, 10, 1902472.	10.2	98
136	Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8, 40-55.	5.8	97
137	Postsynthesis Potassiumâ€Modification Method to Improve Stability of CsPbBr ₃ Perovskite Nanocrystals. Advanced Optical Materials, 2018, 6, 1701106.	3.6	95
138	Chemical Vapor Deposition Growth of High Crystallinity Sb ₂ Se ₃ Nanowire with Strong Anisotropy for Nearâ€Infrared Photodetectors. Small, 2019, 15, e1805307.	5.2	93
139	Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. Nanoscale, 2010, 2, 1027.	2.8	92
140	\hat{l}^2 -Cyclodextrin stabilized magnetic Fe ₃ S ₄ nanoparticles for efficient removal of Pb(<scp>ii</scp>). Journal of Materials Chemistry A, 2015, 3, 15755-15763.	5.2	92
141	General Method for the Synthesis of Ultrastable Core/Shell Quantum Dots by Aluminum Doping. Journal of the American Chemical Society, 2015, 137, 12430-12433.	6.6	91
142	Two-dimensional inorganic molecular crystals. Nature Communications, 2019, 10, 4728.	5.8	91
143	Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water. ACS Catalysis, 2015, 5, 4115-4120.	5.5	90
144	Liquidâ€Alloyâ€Assisted Growth of 2D Ternary Ga ₂ In ₄ S ₉ toward Highâ€Performance UV Photodetection. Advanced Materials, 2019, 31, e1806306.	11.1	90

#	Article	IF	CITATIONS
145	An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts. Nano Energy, 2018, 50, 273-280.	8.2	89
146	The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1901566.	10.2	89
147	Largeâ€Area Aminatedâ€Graphdiyne Thin Films for Direct Methanol Fuel Cells. Angewandte Chemie - International Edition, 2019, 58, 15010-15015.	7.2	88
148	Boosting the performance of organic cathodes through structure tuning. Journal of Materials Chemistry A, 2018, 6, 12985-12991.	5.2	87
149	Switch of the Rate-Determining Step of Water Oxidation by Spin-Selected Electron Transfer in Spinel Oxides. Chemistry of Materials, 2019, 31, 8106-8111.	3.2	87
150	Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Naâ€lon Batteries. Small, 2018, 14, e1703338.	5.2	86
151	Selfâ€Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for Highâ€Performance Photodetectors. Advanced Functional Materials, 2018, 28, 1800181.	7.8	86
152	NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy, 2019, 64, 103941.	8.2	83
153	Lowâ€dimensional nanomaterial/Si heterostructureâ€based photodetectors. InformaÄnÃ-Materiály, 2019, 1, 140-163.	8.5	81
154	Transition metal oxides for water oxidation: All about oxyhydroxides?. Science China Materials, 2020, 63, 3-7.	3. 5	81
155	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie - International Edition, 2021, 60, 7488-7501.	7.2	80
156	Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy, 2019, 57, 711-717.	8.2	78
157	Ferromagnetic–Antiferromagnetic Coupling Core–Shell Nanoparticles with Spin Conservation for Water Oxidation. Advanced Materials, 2021, 33, e2101091.	11.1	77
158	Achieving high performance electromagnetic wave attenuation: a rational design of silica coated mesoporous iron microcubes. Journal of Materials Chemistry C, 2014, 2, 7583.	2.7	75
159	Spontaneously Splitting Copper Nanowires into Quantum Dots on Graphdiyne for Suppressing Lithium Dendrites. Advanced Materials, 2020, 32, e2004379.	11.1	74
160	Orientation-Controlled Synthesis and Ferromagnetism of Single Crystalline Co Nanowire Arrays. Journal of Physical Chemistry C, 2008, 112, 1468-1472.	1.5	73
161	From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts. Nano-Micro Letters, 2018, 10, 8.	14.4	73
162	Efficient removal of Pb(<scp>ii</scp>) from water using magnetic Fe ₃ S ₄ /reduced graphene oxide composites. Journal of Materials Chemistry A, 2017, 5, 19333-19342.	5.2	72

#	Article	IF	CITATIONS
163	Nonlayered Two-Dimensional Defective Semiconductor \hat{I}^3 -Ga ₂ S ₃ toward Broadband Photodetection. ACS Nano, 2019, 13, 6297-6307.	7.3	72
164	In Situ Coating Graphdiyne for Highâ€Energyâ€Density and Stable Organic Cathodes. Advanced Materials, 2020, 32, e2000140.	11.1	72
165	One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale, 2010, 2, 1375.	2.8	71
166	Optimization of Zn _{<i>x</i>} Fe _{3â€"<i>x</i>} O ₄ Hollow Spheres for Enhanced Microwave Attenuation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21911-21915.	4.0	71
167	High-performance hybrid electrochemical capacitor with binder-free Nb ₂ O ₅ @graphene. RSC Advances, 2014, 4, 37389.	1.7	71
168	Variability and reduction of atmospheric pollutants in Beijing and its surrounding area during the Beijing 2008 Olympic Games. Science Bulletin, 2010, 55, 1937-1944.	1.7	70
169	Reserving Interior Void Space for Volume Change Accommodation: An Example of Cableâ€Like MWNTs@SnO ₂ @C Composite for Superior Lithium and Sodium Storage. Advanced Science, 2015, 2, 1500097.	5.6	69
170	Composition dependence of methanol oxidation activity in nickel–cobalt hydroxides and oxides: an optimization toward highly active electrodes. Electrochimica Acta, 2015, 165, 56-66.	2.6	69
171	Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides. Angewandte Chemie, 2019, 131, 6103-6108.	1.6	69
172	Solid-state activation of Li ₂ O ₂ oxidation kinetics and implications for Li–O ₂ batteries. Energy and Environmental Science, 2015, 8, 2417-2426.	15.6	68
173	Identifying Influential Parameters of Octahedrally Coordinated Cations in Spinel ZnMn _{<i>x</i>} Co _{2–<i>x</i>} O ₄ Oxides for the Oxidation Reaction. ACS Catalysis, 2018, 8, 8568-8577.	5.5	68
174	Yolk–shell Fe ₂ O ₃ ⊙ C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale, 2015, 7, 9520-9525.	2.8	67
175	A novel quinone-based polymer electrode for high performance lithium-ion batteries. Science China Materials, 2016, 59, 6-11.	3.5	67
176	Low-temperature-processed inorganic perovskite solar cells <i>via</i> solvent engineering with enhanced mass transport. Journal of Materials Chemistry A, 2018, 6, 23602-23609.	5.2	67
177	Designing a Transparent Cdln ₂ S ₄ /ln ₂ S ₃ Bulkâ€Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting. Advanced Materials, 2020, 32, e2002893.	11.1	67
178	Boosting Electrochemical CO ₂ Reduction on Metal–Organic Frameworks via Ligand Doping. Angewandte Chemie, 2019, 131, 4081-4085.	1.6	66
179	An Energetic CuS–Cu Battery System Based on CuS Nanosheet Arrays. ACS Nano, 2021, 15, 5420-5427.	7.3	66
180	Metal–Oxygen Hybridization Determined Activity in Spinel-Based Oxygen Evolution Catalysts: A Case Study of ZnFe _{2–⟨i⟩x⟨ i⟩⟨ sub⟩Cr⟨sub⟩⟨i⟩x⟨ i⟩⟨ sub⟩O⟨sub⟩4⟨ sub⟩. Chemistry of Materials, 2018, 30, 6839-6848.}	3.2	65

#	Article	IF	CITATIONS
181	Molybdenumâ€based materials for sodiumâ€ion batteries. InformaÄnÃ-Materiály, 2021, 3, 339-352.	8.5	65
182	Doping metal ions only onto the catalyst surface. Journal of Molecular Catalysis A, 2004, 219, 351-355.	4.8	64
183	Novel Conjugated Ladder-Structured Oligomer Anode with High Lithium Storage and Long Cycling Capability. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16932-16938.	4.0	64
184	Tailored Au@TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12034-12042.	5.2	64
185	Electrochemistry in Magnetic Fields. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
186	Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology, 2005, 16, 267-272.	1.3	63
187	Regulation of Breathing CuO Nanoarray Electrodes for Enhanced Electrochemical Sodium Storage. Advanced Functional Materials, 2018, 28, 1707179.	7.8	61
188	Ternary graphitic carbon nitride/red phosphorus/molybdenum disulfide heterostructure: An efficient and low cost photocatalyst for visible-light-driven H2 evolution from water. Carbon, 2017, 119, 56-61.	5 . 4	60
189	Angiopoietin-like 4 Increases Pulmonary Tissue Leakiness and Damage during Influenza Pneumonia. Cell Reports, 2015, 10, 654-663.	2.9	59
190	A Universal Strategy for Constructing Seamless Graphdiyne on Metal Oxides to Stabilize the Electrochemical Structure and Interface. Advanced Materials, 2019, 31, e1806272.	11.1	59
191	Surface Ligand Engineering toward Brightly Luminescent and Stable Cesium Lead Halide Perovskite Nanoplatelets for Efficient Blue-Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 26161-26169.	1.5	59
192	Nitrogenâ€Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Advanced Functional Materials, 2022, 32, .	7.8	59
193	Revealing the Dominant Chemistry for Oxygen Reduction Reaction on Small Oxide Nanoparticles. ACS Catalysis, 2018, 8, 673-677.	5 . 5	58
194	The 2022 solar fuels roadmap. Journal Physics D: Applied Physics, 2022, 55, 323003.	1.3	58
195	Î ² -FeOOH: An Earth-Abundant High-Capacity Negative Electrode Material for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 5340-5348.	3.2	57
196	A Facile Synthesis of Size-Controllable IrO2 and RuO2 Nanoparticles for the Oxygen Evolution Reaction. Electrocatalysis, 2016, 7, 420-427.	1.5	57
197	Encapsulating porous SnO ₂ into a hybrid nanocarbon matrix for long lifetime Li storage. Journal of Materials Chemistry A, 2017, 5, 25609-25617.	5. 2	57
198	Nanostructured Metal–Organic Conjugated Coordination Polymers with Ligand Tailoring for Superior Rechargeable Energy Storage. Small, 2019, 15, e1903188.	5 . 2	57

#	Article	IF	CITATIONS
199	Templateâ€Free Construction of Selfâ€Supported Sb Prisms with Stable Sodium Storage. Advanced Energy Materials, 2019, 9, 1901096.	10.2	57
200	Large-Scale Synthesis of Highly Luminescent Perovskite Nanocrystals by Template-Assisted Solid-State Reaction at 800 °C. Chemistry of Materials, 2020, 32, 308-314.	3.2	57
201	Superior Lithium Storage Properties of βâ€FeOOH. Advanced Energy Materials, 2015, 5, 1401517.	10.2	56
202	Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Research, 2019, 12, 1461-1465.	5.8	56
203	Enhancing the Charge Transportation Ability of Yolk–Shell Structure for High-Rate Sodium and Potassium Storage. ACS Nano, 2020, 14, 4463-4474.	7.3	56
204	Cathode Architectures for Rechargeable Ion Batteries: Progress and Perspectives. Advanced Materials, 2020, 32, e2000288.	11.1	55
205	Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology, 2007, 18, 115608.	1.3	54
206	Degree of Geometric Tilting Determines the Activity of FeO ₆ Octahedra for Water Oxidation. Chemistry of Materials, 2018, 30, 4313-4320.	3.2	54
207	Influence of Fe Substitution into LaCoO ₃ Electrocatalysts on Oxygen-Reduction Activity. ACS Applied Materials & Diterfaces, 2019, 11, 5682-5686.	4.0	54
208	Polycrystalline zinc stannate as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14033-14038.	5.2	53
209	Non-blinking (Zn)CuInS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach. Scientific Reports, 2015, 5, 15227.	1.6	52
210	Improving the Performance of Lithium–Sulfur Batteries by Employing Polyimide Particles as Hosting Matrixes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7464-7470.	4.0	52
211	Steamed water engineering mechanically robust graphene films for high-performance electrochemical capacitive energy storage. Nano Energy, 2016, 26, 668-676.	8.2	51
212	Three-Dimensional Modeling of a Fin-Actuated Robotic Fish With Multimodal Swimming. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1641-1652.	3.7	51
213	SmCo ₅ with a Reconstructed Oxyhydroxide Surface for Spinâ€Selective Water Oxidation at Elevated Temperature. Angewandte Chemie - International Edition, 2021, 60, 25884-25890.	7.2	51
214	Controlled synthesis of high-performance \hat{l}^2 -FeOOH anodes for lithium-ion batteries and their size effects. Nano Energy, 2015, 13, 397-404.	8.2	49
215	Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors. Applied Surface Science, 2016, 379, 206-212.	3.1	48
216	Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods. ACS Nano, 2017, 11, 8804-8813.	7.3	48

#	Article	IF	CITATIONS
217	Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption. Ceramics International, 2020, 46, 15447-15455.	2.3	48
218	Electrospinning for flexible sodium-ion batteries. Energy Storage Materials, 2022, 45, 704-719.	9.5	48
219	A general non-CH $<$ sub $>3sub>NH<sub>3sub>X (X = I, Br) one-step deposition of CH<sub>3sub>NH<sub>3sub>PbX<sub>3sub> perovskite for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 3245-3248.$	5.2	47
220	Active Phase on SrCo _{1–<i>x</i>} Fe _{<i>x</i>} O _{3â^Î} (0 ≤i>x a‰æi.x Perovskite for Water Oxidation: Reconstructed Surface versus Remaining Bulk. Jacs Au, 2021, 1, 108-115.	5) 3.6	47
221	Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction. Journal of Materials Chemistry A, 2017, 5, 11905-11916.	5.2	46
222	Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline. Electrochimica Acta, 2017, 228, 183-194.	2.6	45
223	Extremely low trap-state energy level perovskite solar cells passivated using NH2-POSS with improved efficiency and stability. Journal of Materials Chemistry A, 2018, 6, 6806-6814.	5.2	45
224	Electrospun Materials for Batteries Moving Beyond Lithium-Ion Technologies. Electrochemical Energy Reviews, 2022, 5, 211-241.	13.1	44
225	Fe2O3 Nanoparticle/SWCNT Composite Electrode for Sensitive Electrocatalytic Oxidation of Hydroquinone. Electrochimica Acta, 2015, 180, 1059-1067.	2.6	43
226	Revealing the Impact of Electrolyte Composition for Co-Based Water Oxidation Catalysts by the Study of Reaction Kinetics Parameters. ACS Catalysis, 2020, 10, 4160-4170.	5.5	43
227	Size Effects of Electrocatalysts: More Than a Variation of Surface Area. ACS Nano, 2022, 16, 8531-8539.	7.3	42
228	Direct Colloidal Route for Pt-Covered AuPt Bimetallic Nanoparticles. Journal of Physical Chemistry Letters, 2010, 1, 2514-2518.	2.1	41
229	Ultrathin Graphdiyne Nanosheets Grown Inâ€Situ on Copper Nanowires and Their Performance as Lithium″on Battery Anodes. Angewandte Chemie, 2018, 130, 782-786.	1.6	41
230	Lattice site–dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. Science Advances, 2021, 7, eabk1788.	4.7	41
231	A new insight into electrochemical detection of eugenol by hierarchical sheaf-like mesoporous NiCo2O4. Nano Research, 2015, 8, 2636-2645.	5.8	40
232	Saltâ€Assisted Growth of Pâ€type Cu ₉ S ₅ Nanoflakes for Pâ€N Heterojunction Photodetectors with High Responsivity. Advanced Functional Materials, 2020, 30, 1908382.	7.8	40
233	Confined Synthesis of Stable and Uniform CsPbBr ₃ Nanocrystals with High Quantum Yield up to 90% by High Temperature Solidâ€State Reaction. Advanced Optical Materials, 2021, 9, 2002130.	3.6	40
234	Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. EScience, 2022, 2, 87-94.	25.0	40

#	Article	IF	CITATIONS
235	Dualâ€Doped Hematite Nanorod Arrays on Carbon Cloth as a Robust and Flexible Sodium Anode. Advanced Functional Materials, 2020, 30, 1910043.	7.8	39
236	Narrow-Band Violet-Light-Emitting Diodes Based on Stable Cesium Lead Chloride Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 3545-3554.	8.8	39
237	Spinel Manganese Ferrites for Oxygen Electrocatalysis: Effect of Mn Valency and Occupation Site. Electrocatalysis, 2018, 9, 287-292.	1.5	38
238	Catalytically Influential Features in Transition Metal Oxides. ACS Catalysis, 2021, 11, 13947-13954.	5.5	38
239	Aqueous-Based Chemical Route toward Ambient Preparation of Multicomponent Core–Shell Nanotubes. ACS Nano, 2014, 8, 4004-4014.	7.3	37
240	Oxygen Reduction Activity and Stability Trends of Bimetallic Pt _{0.5} M _{0.5} Nanoparticle in Acid. Journal of Physical Chemistry C, 2015, 119, 3971-3978.	1.5	36
241	Atomic layer deposition triggered Fe-In-S cluster and gradient energy band in ZnInS photoanode for improved oxygen evolution reaction. Nature Communications, 2021, 12, 5247.	5.8	36
242	Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. Journal of Catalysis, 2017, 352, 113-119.	3.1	35
243	Graphene Oxideâ€Supported βâ€Tin Telluride Composite for Sodium―and Lithium―on Battery Anodes. Energy Technology, 2018, 6, 127-133.	1.8	35
244	Origin of electronic structure dependent activity of spinel ZnNixCo2-xO4 oxides for complete methane oxidation. Applied Catalysis B: Environmental, 2019, 256, 117844.	10.8	35
245	A Perspective on the Behavior of Lithium Anodes under a Magnetic Field. Small Structures, 2021, 2, 2000043.	6.9	34
246	Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation. Chinese Physics B, 2010, 19, 106104.	0.7	33
247	CaF ₂ -Based Near-Infrared Photocatalyst Using the Multifunctional CaTiO ₃ Precursors as the Calcium Source. ACS Applied Materials & Interfaces, 2015, 7, 20170-20178.	4.0	33
248	Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26503-26509.	4.0	33
249	Critical role of metal ions in surface engineering toward brightly luminescent and stable cesium lead bromide perovskite quantum dots. Nanoscale, 2019, 11, 2602-2607.	2.8	33
250	Facile Aluminum Reduction Synthesis of Blue TiO ₂ with Oxygen Deficiency for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2015, 21, 18309-18315.	1.7	32
251	Activation Effect of Electrochemical Cycling on Gold Nanoparticles towards the Hydrogen Evolution Reaction in Sulfuric Acid. Electrochimica Acta, 2016, 209, 440-447.	2.6	32
252	The interplay between the suprafacial and intrafacial mechanisms for complete methane oxidation on substituted LaCoO3 perovskite oxides. Journal of Catalysis, 2020, 390, 1-11.	3.1	32

#	Article	IF	Citations
253	Bifunctional Passivation Strategy to Achieve Stable CsPbBr ₃ Nanocrystals with Drastically Reduced Thermal-Quenching. Journal of Physical Chemistry Letters, 2020, 11, 993-999.	2.1	32
254	Oxygen evolution in spin-sensitive pathways. Current Opinion in Electrochemistry, 2021, 30, 100804.	2.5	32
255	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. Angewandte Chemie, 2020, 132, 9504-9508.	1.6	31
256	A discussion on the possible involvement of singlet oxygen in oxygen electrocatalysis. JPhys Energy, 2021, 3, 031004.	2.3	31
257	The possible implications of magnetic field effect on understanding the reactant of water splitting. Chinese Journal of Catalysis, 2022, 43, 148-157.	6.9	31
258	Multifunctional Mixedâ€Dimensional MoS ₂ â€"CuO Junction Fieldâ€Effect Transistor for Logic Operation and Phototransistor. Advanced Electronic Materials, 2019, 5, 1800976.	2.6	30
259	Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior. Chemical Physics Letters, 2006, 432, 222-225.	1.2	29
260	CsPbBr ₃ Nanocrystal Light-Emitting Diodes with Efficiency up to 13.4% Achieved by Careful Surface Engineering and Device Engineering. Journal of Physical Chemistry C, 2021, 125, 3110-3118.	1.5	29
261	Ultrathin GaGeTe p-type transistors. Applied Physics Letters, 2017, 111, .	1.5	28
262	Simultaneous reduction and sequestration of hexavalent chromium by magnetic \hat{l}^2 -Cyclodextrin stabilized Fe3S4. Journal of Hazardous Materials, 2022, 431, 128592.	6.5	28
263	Ethylene Glycol and Ethanol Oxidation on Spinel Ni-Co Oxides in Alkaline. Journal of the Electrochemical Society, 2016, 163, H99-H104.	1.3	27
264	Removal and recovery of chloride ions in concentrated leachate by Bi(III) containing oxides quantum dots/two-dimensional flakes. Journal of Hazardous Materials, 2020, 382, 121041.	6.5	27
265	A novel non-enzymatic lindane sensor based on CuO–MnO ₂ hierarchical nano-microstructures for enhanced sensitivity. Chemical Communications, 2015, 51, 4376-4379.	2.2	26
266	The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery. Journal of Power Sources, 2016, 334, 94-103.	4.0	26
267	Hierarchical SnO2-Graphite Nanocomposite Anode for Lithium-Ion Batteries through High Energy Mechanical Activation. Electrochimica Acta, 2017, 248, 440-448.	2.6	26
268	An amino-substituted perylene diimide polymer for conventional perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 2078-2084.	3.2	26
269	High-surface-area mesoporous TiO ₂ microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage. Nanoscale, 2014, 6, 14926-14931.	2.8	25
270	Suppressing thermal quenching of lead halide perovskite nanocrystals by constructing a wide-bandgap surface layer for achieving thermally stable white light-emitting diodes. Chemical Science, 2022, 13, 3719-3727.	3.7	25

#	Article	IF	CITATIONS
271	Engineering Highâ€5pin State Cobalt Cations in Spinel Zinc Cobalt Oxide for Spin Channel Propagation and Active Site Enhancement in Water Oxidation. Angewandte Chemie, 2021, 133, 14657-14665.	1.6	24
272	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€lon Batteries. Angewandte Chemie, 2022, 134, .	1.6	24
273	From fish scales to highly porous N-doped carbon: a low cost material solution for CO ₂ capture. RSC Advances, 2015, 5, 88171-88175.	1.7	23
274	Largeâ€Area Aminatedâ€Graphdiyne Thin Films for Direct Methanol Fuel Cells. Angewandte Chemie, 2019, 131, 15152-15157.	1.6	23
275	Facile synthesis of palladium incorporated NiCo2O4 spinel for low temperature methane combustion: Activate lattice oxygen to promote activity. Journal of Catalysis, 2021, 404, 400-410.	3.1	23
276	Electro-Oxidation of Glycerol to High-Value-Added C1–C3 Products by Iron-Substituted Spinel Zinc Cobalt Oxides. ACS Applied Materials & Lappa (14, 14293-14301).	4.0	23
277	A comparison of carbon supports in MnO ₂ /C supercapacitors. RSC Advances, 2014, 4, 31416.	1.7	22
278	Operando Investigation of Mn \langle sub \rangle 3 \langle sub \rangle 0 \langle sub \rangle 4 $+$ Î \langle lsub \rangle Co-catalyst on Fe \langle sub \rangle 2 \langle lsub \rangle 0 \langle sub \rangle 3 \langle lsub \rangle Photoanode: Manganese-Valency-Determined Enhancement at Varied Potentials. ACS Applied Energy Materials, 2018, 1, 814-821.	2.5	21
279	Surface Reconstruction of Perovskites for Water Oxidation: The Role of Initial Oxides' Bulk Chemistry. Small Science, 2022, 2, 2100048.	5.8	21
280	Controlled one-step synthesis of Pt decorated octahedral Fe ₃ O ₄ and its excellent catalytic performance for CO oxidation. Nanoscale, 2015, 7, 17855-17860.	2.8	20
281	Stable and Flexible CulnS ₂ /ZnS:Al-TiO ₂ Film for Solar-Light-Driven Photodegradation of Soil Fumigant. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20048-20056.	4.0	20
282	Crystalline In–Sb–S framework for highly-performed lithium/sodium storage. Journal of Materials Chemistry A, 2017, 5, 14198-14205.	5.2	20
283	Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode. Langmuir, 2018, 34, 2741-2747.	1.6	20
284	Coiled carbon nanotubes growth and DSC study in epoxy-based composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 339-343.	2.3	19
285	Synthesis, characterization and self-assemblies of magnetite nanoparticles. Surface and Interface Analysis, 2006, 38, 1063-1067.	0.8	19
286	Experimental and theoretical studies on the oneâ€photon and twoâ€photon properties of a series of carbazole derivatives containing styrene. Journal of Physical Organic Chemistry, 2012, 25, 362-372.	0.9	19
287	Micro-optical coherence tomography tracking of magnetic gene transfection via Au–Fe ₃ O ₄ dumbbell nanoparticles. Nanoscale, 2015, 7, 17249-17253.	2.8	19
288	Smart Magnetic Nanosensors Synthesized through Layer-by-Layer Deposition of Molecular Beacons for Noninvasive and Longitudinal Monitoring of Cellular mRNA. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5877-5886.	4.0	19

#	Article	IF	CITATIONS
289	Selective Electroreduction of Carbon Dioxide to Formic Acid on Cobaltâ€Decorated Copper Thin Films. Small Methods, 2019, 3, 1900362.	4.6	19
290	Exchangeâ€Coupled fctâ€FePd∫l±â€Fe Nanocomposite Magnets Converted from Pd/Fe≀sub>3O ₄ Core/Shell Nanoparticles. Chemistry - A European Journal, 2014, 20, 15197-15202.	1.7	18
291	A Conjugated Copolymer of <i>N</i> â€Phenylâ€ <i>p</i> â€phenylenediamine and Pyrene as Promising Cathode for Rechargeable Lithium–lon Batteries. Chemistry - an Asian Journal, 2019, 14, 2210-2214.	1.7	18
292	Doubly Coated, Organic–Inorganic Paraffin Phase Change Materials: Zinc Oxide Coating of Hermetically Encapsulated Paraffins. Advanced Materials Interfaces, 2019, 6, 1900368.	1.9	18
293	Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 14106-14113.	5.2	18
294	Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li–S Batteries. Nano-Micro Letters, 2020, 12, 141.	14.4	18
295	Effects of catalyst mass loading on electrocatalytic activity: An example of oxygen evolution reaction. Fundamental Research, 2021, 1, 448-452.	1.6	18
296	Tuning emission and Stokes shift of CdS quantum dots via copper and indium co-doping. RSC Advances, 2015, 5, 628-634.	1.7	17
297	Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. Materials, 2022, 15, 1053.	1.3	17
298	Controlled Growth of 3D Interpenetrated Networks by NiCo ₂ O ₄ and Graphdiyne for High-Performance Supercapacitor. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18283-18292.	4.0	17
299	Facile synthesis and electrochemical properties of Fe3O4 hexahedra for Li-ion battery anode. Materials Letters, 2015, 141, 319-322.	1.3	16
300	Evaluation of electrochemical performances of ZnFe ₂ 0 ₃ nanoparticles prepared by laser pyrolysis. New Journal of Chemistry, 2017, 41, 9236-9243.	1.4	16
301	Insights into the synergistic effect of ammonium and phosphate-containing additives for a thermally stable vanadium redox flow battery electrolyte. Journal of Power Sources, 2018, 402, 75-81.	4.0	16
302	Bottom-level motion control for robotic fish to swim in groups: modeling and experiments. Bioinspiration and Biomimetics, 2019, 14, 046001.	1.5	16
303	Enhanced Thermal Buffering of Phase Change Materials by the Intramicrocapsule Sub per Mille CNT Dopant. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16227-16235.	4.0	16
304	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie, 2021, 133, 7564-7577.	1.6	16
305	One-Step Block Copolymer Templated Synthesis of Bismuth Oxybromide for Bisphenol A Degradation: An Extended Study from Photocatalysis to Chemical Oxidation. ACS ES&T Water, 2021, 1, 837-846.	2.3	16
306	Application of Taguchi Method in the Optimization of Swimming Capability for Robotic Fish. International Journal of Advanced Robotic Systems, 2016, 13, 102.	1.3	15

#	Article	IF	CITATIONS
307	Rational Design of Amphiphilic Peptides and Its Effect on Antifouling Performance. Biomacromolecules, 2018, 19, 3620-3627.	2.6	15
308	Equilibrium and Dynamic Absorption of Electrolyte Species in Cation/Anion Exchange Membranes of Vanadium Redox Flow Batteries. ChemSusChem, 2019, 12, 1076-1083.	3.6	15
309	Nanocasting synthesis of Fe ₃ O ₄ @HTC nanocapsules and their superior electromagnetic properties. RSC Advances, 2016, 6, 20386-20391.	1.7	14
310	Unexpected Intrinsic Catalytic Function of Porous Boron Nitride Nanorods for Highly Efficient Peroxymonosulfate Activation in Water Treatment. ACS Applied Materials & Interfaces, 2022, 14, 18409-18419.	4.0	14
311	Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios. Chinese Physics B, 2011, 20, 076103.	0.7	13
312	An electrochemical sensor highly selective for lindane determination: a comparative study using three different α-MnO ₂ nanostructures. RSC Advances, 2016, 6, 22973-22979.	1.7	13
313	Efficient Moistureâ€Resistant Perovskite Solar Cell With Nanostructure Featuring 3D Amine Motif. Solar Rrl, 2018, 2, 1800069.	3.1	13
314	Enhancing the performance of LARP-synthesized CsPbBr ₃ nanocrystal LEDs by employing a dual hole injection layer. RSC Advances, 2020, 10, 17653-17659.	1.7	13
315	Understanding the Role of Topotactic Anion Exchange in the Robust Cu Ion Storage of CuS _{1â€"<i>x</i>} Se _{<i>x</i>} . ACS Energy Letters, 2022, 7, 1835-1841.	8.8	13
316	Free-standing functional graphene reinforced carbon films with excellent mechanical properties and superhydrophobic characteristic. Composites Part A: Applied Science and Manufacturing, 2015, 74, 96-106.	3.8	12
317	Nano-hydroxyapatite as an Efficient Polysulfide Absorbent for High-performance Li-S Batteries. Electrochimica Acta, 2016, 215, 162-170.	2.6	12
318	Synthesis of lead halide perovskite nanocrystals by melt crystallization in halide salts. Chemical Communications, 2020, 56, 11291-11294.	2.2	12
319	Surface Oxidation of Quantum Dots to Improve the Device Performance of Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28424-28430.	1.5	12
320	From aqueous to organic: A step-by-step strategy for shape evolution of gold nanoparticles. Chemical Physics Letters, 2005, 415, 342-345.	1,2	11
321	Segregation induced order-disorder transition in Cu(Au) surface alloys. Acta Materialia, 2018, 154, 220-227.	3.8	11
322	Electrocatalysis: A Core Technique for a Sustainable Future. Chemistry - A European Journal, 2020, 26, 3897-3897.	1.7	11
323	Synthesis and properties of Au–Fe ₃ O ₄ and Ag–Fe ₃ O ₄ heterodimeric nanoparticles. Chinese Physics B, 2010, 19, 066102.	0.7	10
324	Synthesis of novel magnetic sulfur-doped Fe3O4 nanoparticles for efficient removal of Pb(II). Science China Chemistry, 2018, 61, 164-171.	4.2	10

#	Article	IF	CITATIONS
325	Toward Coordination Control of Multiple Fish-Like Robots: Real-Time Vision-Based Pose Estimation and Tracking via Deep Neural Networks. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 1964-1976.	8.5	10
326	A Discrete 3d–4f Metallacage as an Efficient Catalytic Nanoreactor for a Three-Component Aza-Darzens Reaction. Inorganic Chemistry, 2022, 61, 4009-4017.	1.9	10
327	Effect of the Electronic Structure on the Stability of CdSe/CdS and CdSe/CdS/ZnS Quantum-Dot Phosphors Incorporated into a Silica/Alumina Monolith. ACS Applied Nano Materials, 2018, 1, 3086-3090.	2.4	9
328	Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability. Chemical Science, 2019, 10, 6683-6688.	3.7	9
329	Hydrogen peroxide sol–gel coating of microencapsulated phase change materials by metal oxides. Journal of Sol-Gel Science and Technology, 2020, 95, 649-660.	1.1	9
330	Nano ferric oxide adsorbents with self-acidification effect for efficient adsorption of Sb(V). Chemosphere, 2021, 272, 129933.	4.2	9
331	The importance of the dissolution of polysulfides in lithium-sulfur batteries and a perspective on high-energy electrolyte/cathode design. Electrochimica Acta, 2021, 392, 139013.	2.6	9
332	Rooting Zn into metallic Na bulk for energetic metal anode. Science China Materials, 2022, 65, 1789-1796.	3 . 5	9
333	Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation. Angewandte Chemie, 2021, 133, 7494-7501.	1.6	8
334	Electrochemically Anodized V ₂ O ₅ as an Efficient Sodium Cathode. Energy & Lamp; Fuels, 2021, 35, 8358-8364.	2.5	8
335	High-Efficiency Semitransparent Light-Emitting Diodes with Perovskite Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19697-19703.	4.0	8
336	Growth of Au Nanowires at the Interface of Air/Water. Journal of Physical Chemistry C, 2009, 113, 15196-15200.	1.5	7
337	Gesture recognition based teleoperation framework of robotic fish., 2016,,.		7
338	Revealing the Fast and Durable Na ⁺ Insertion Reactions in a Layered Na ₃ Fe ₃ (PO ₄) ₄ Anode for Aqueous Na-Ion Batteries. ACS Materials Au, 2022, 2, 63-71.	2.6	7
339	Optimized synthesis of CulnS ₂ /ZnS:Al–TiO ₂ nanocomposites for 1,3-dichloropropene photodegradation. RSC Advances, 2016, 6, 77777-77785.	1.7	6
340	Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts. Nanotechnology, 2018, 29, 425703.	1.3	6
341	The construction of the novel magnetic prodrug Fe3O4@DOX and its antagonistic effects on hepatocarcinoma with low toxicity. RSC Advances, 2020, 10, 28965-28974.	1.7	6
342	Electrochemistry in Magnetic Fields. Angewandte Chemie, 2022, 134, .	1.6	6

#	Article	IF	CITATIONS
343	A facile fabrication of Cu2O nanowire arrays on Cu substrates. Open Engineering, 2012, 2, .	0.7	5
344	Preparation of Thermo-Sensitive Magnetic Cationic Hydrogel for the Adsorption of Reactive Red Dye. Journal of Dispersion Science and Technology, 2015, 36, 714-722.	1.3	5
345	Electrochemical Cycling Induced Surface Segregation of AuPt Nanoparticles in HClO4and H2SO4. Journal of the Electrochemical Society, 2016, 163, F752-F760.	1.3	5
346	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte. Journal of the Electrochemical Society, 2019, 166, A3570-A3574.	1.3	5
347	Ir-skinned Ir-Cu Nanoparticles with Enhanced Activity for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2020, 36, 467-472.	1.3	5
348	Architecting core-shell nanosheets of MoS2-polypyrrole on carbon cloth as a robust sodium anode. Sustainable Materials and Technologies, 2021, 28, e00255.	1.7	5
349	Digital implementation of CPG controller in AVR system. , 2014, , .		4
350	Micro-force measuring apparatus for robotic fish: Design, implementation and application., 2015,,.		4
351	Exploring the backward swimming ability of a robotic fish. International Journal of Advanced Robotic Systems, 2016, 13, 172988141666948.	1.3	4
352	An Electrochemical Method for Monitoring the Acidity of Water for Fuel Cell and Environmental Applications. Energy Technology, 2018, 6, 94-99.	1.8	4
353	Theoretical design and exploration of novel high energy density materials based on silicon. Journal of Energetic Materials, 2018, 36, 291-301.	1.0	4
354	Designing PEDOT-modified V6O13 nanosheet arrays for sodium storage. Functional Materials Letters, 0, , 2143001.	0.7	4
355	Pulsed electrodeposition and unique properties of one-dimensional Bi-based nanostructures in porous alumina membranes. Pure and Applied Chemistry, 2010, 82, 2075-2095.	0.9	3
356	CPG-based locomotion control of a quadruped amphibious robot. , 2012, , .		3
357	Detection of Bacteria in Water with \hat{l}^2 -Galactosidase-Coated Magnetic Nanoparticles. SLAS Technology, 2018, 23, 624-630.	1.0	3
358	Lithium Storage: An Air-Stable Densely Packed Phosphorene-Graphene Composite Toward Advanced Lithium Storage Properties (Adv. Energy Mater. 12/2016). Advanced Energy Materials, 2016, 6, .	10.2	2
359	Synthesis of Europium Sulfides by CS2 Sulfurization and Heat Treatment. MRS Advances, 2016, 1, 3983-3988.	0.5	2
360	Photodetectors: Interlayer Coupling Induced Infrared Response in WS ₂ /MoS ₂ Heterostructures Enhanced by Surface Plasmon Resonance (Adv. Funct. Mater. 22/2018). Advanced Functional Materials, 2018, 28, 1870151.	7.8	2

#	Article	IF	CITATIONS
361	SmCo5 with a reconstructed oxyhydroxide surface for spin selective water oxidation under elevated temperature. Angewandte Chemie, 0, , .	1.6	2
362	Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells. Chemical Research in Chinese Universities, 2021, 37, 1275-1282.	1.3	2
363	Stable Leadâ€Free Tin Halide Perovskite with Operational Stability >1200 h by Suppressing Tin(II) Oxidation. Angewandte Chemie, 2022, 134, .	1.6	2
364	Synthesis of C-Plane Oriented Hexagonal Tungsten Oxide Membranes on Tubular Substrates and Their Acetic Acid/Water Separation Performances. Membranes, 2021, 11, 38.	1.4	1
365	Weak localization and electron-phonon interaction in layered Zintl phase Srln2P2 single crystal. Journal of Physics Condensed Matter, 2021, 33, 245701.	0.7	1
366	Recent Progress on 2D Noble-Transition-Metal Dichalcogenides. , 2019, 29, 1904932.		1
367	Bimetallic Nanoparticles: Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering (Small 27/2015). Small, 2015, 11, 3198-3198.	5.2	O
368	Phase Change Materials: Doubly Coated, Organic–Inorganic Paraffin Phase Change Materials: Zinc Oxide Coating of Hermetically Encapsulated Paraffins (Adv. Mater. Interfaces 12/2019). Advanced Materials Interfaces, 2019, 6, 1970077.	1.9	0
369	1,3-Dichloropropene and chloropicrin emission reduction using a flexible CulnS2/ZnS:Al-TiO2 photocatalytic film. Environmental Science and Pollution Research, 2021, 28, 6980-6989.	2.7	O
370	23.6: Invited Paper: Enhancing the Stability and Efficiency of Perovskite Nanocrystals Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 306-306.	0.1	0
371	Interference Effect between Lithium Nitrate Additive and the Polysulfide Adsorber Magnesium Ferrite in Lithium-Sulfur Cells. Journal of the Electrochemical Society, 2021, 168, 090556.	1.3	O