Jörg Scheuermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1315174/publications.pdf

Version: 2024-02-01

72 papers 4,524 citations

39 h-index 66 g-index

88 all docs 88 docs citations

88 times ranked 2696 citing authors

#	Article	IF	CITATIONS
1	Encoded self-assembling chemical libraries. Nature Biotechnology, 2004, 22, 568-574.	17. 5	319
2	DNA-Encoded Chemical Libraries: Advancing beyond Conventional Small-Molecule Libraries. Accounts of Chemical Research, 2014, 47, 1247-1255.	15.6	203
3	High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17670-17675.	7.1	192
4	A Portable Albumin Binder from a DNAâ€Encoded Chemical Library. Angewandte Chemie - International Edition, 2008, 47, 3196-3201.	13.8	187
5	Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nature Chemistry, 2015, 7, 241-249.	13.6	181
6	Small Targeted Cytotoxics: Current State and Promises from DNAâ€Encoded Chemical Libraries. Angewandte Chemie - International Edition, 2013, 52, 1384-1402.	13.8	130
7	Selection of Carbonic Anhydrase IX Inhibitors from One Million DNA-Encoded Compounds. ACS Chemical Biology, 2011, 6, 336-344.	3.4	129
8	<scp>DNA</scp> â€encoded chemical libraries – achievements and remaining challenges. FEBS Letters, 2018, 592, 2168-2180.	2.8	129
9	20 years of DNA-encoded chemical libraries. Chemical Communications, 2011, 47, 12747.	4.1	124
10	A Small-Molecule Inhibitor of Lin28. ACS Chemical Biology, 2016, 11, 2773-2781.	3.4	121
			ŀ
11	A Traceless Vascularâ€Targeting Antibody–Drug Conjugate for Cancer Therapy. Angewandte Chemie - International Edition, 2012, 51, 941-944.	13.8	113
11	A Traceless Vascularâ€Targeting Antibody–Drug Conjugate for Cancer Therapy. Angewandte Chemie - International Edition, 2012, 51, 941-944. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nature Chemistry, 2018, 10, 441-448.	13.8	113
	Versatile protein recognition by the encoded display of multiple chemical elements on a constant		
12	Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nature Chemistry, 2018, 10, 441-448. Discovery of TNF Inhibitors from a DNA-Encoded Chemical Library based on Diels-Alder Cycloaddition.	13.6	110
12	Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nature Chemistry, 2018, 10, 441-448. Discovery of TNF Inhibitors from a DNA-Encoded Chemical Library based on Diels-Alder Cycloaddition. Chemistry and Biology, 2009, 16, 1075-1086. Site-Specific Traceless Coupling of Potent Cytotoxic Drugs to Recombinant Antibodies for	13.6	110
12 13 14	Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nature Chemistry, 2018, 10, 441-448. Discovery of TNF Inhibitors from a DNA-Encoded Chemical Library based on Diels-Alder Cycloaddition. Chemistry and Biology, 2009, 16, 1075-1086. Site-Specific Traceless Coupling of Potent Cytotoxic Drugs to Recombinant Antibodies for Pharmacodelivery. Journal of the American Chemical Society, 2012, 134, 5887-5892. Isolation of High-Affinity Trypsin Inhibitors from a DNA-Encoded Chemical Library. Angewandte Chemie	13.6 6.0 13.7	110 109 107
12 13 14	Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nature Chemistry, 2018, 10, 441-448. Discovery of TNF Inhibitors from a DNA-Encoded Chemical Library based on Diels-Alder Cycloaddition. Chemistry and Biology, 2009, 16, 1075-1086. Site-Specific Traceless Coupling of Potent Cytotoxic Drugs to Recombinant Antibodies for Pharmacodelivery. Journal of the American Chemical Society, 2012, 134, 5887-5892. Isolation of High-Affinity Trypsin Inhibitors from a DNA-Encoded Chemical Library. Angewandte Chemie - International Edition, 2007, 46, 4671-4674. Design and synthesis of a novel DNA-encoded chemical library using Diels-Alder cycloadditions.	13.6 6.0 13.7	110 109 107

#	Article	IF	CITATIONS
19	Automated screening for small organic ligands using DNA-encoded chemical libraries. Nature Protocols, 2016, 11, 764-780.	12.0	94
20	DNA-Encoded Chemical Libraries for the Discovery of MMP-3 Inhibitors. Bioconjugate Chemistry, 2008, 19, 778-785.	3.6	86
21	Identification of Structure–Activity Relationships from Screening a Structurally Compact DNAâ€Encoded Chemical Library. Angewandte Chemie - International Edition, 2015, 54, 3927-3931.	13.8	86
22	DNA-encoded chemical libraries. Nature Reviews Methods Primers, 2022, 2, .	21,2	75
23	Selection of Streptavidin Binders from a DNA-Encoded Chemical Library. Bioconjugate Chemistry, 2006, 17, 366-370.	3.6	64
24	DNA-encoded chemical libraries. Journal of Biotechnology, 2006, 126, 568-581.	3.8	63
25	Tankyrase 1 Inhibitors with Drug-like Properties Identified by Screening a DNA-Encoded Chemical Library. Journal of Medicinal Chemistry, 2015, 58, 5143-5149.	6.4	60
26	Lead discovery by DNA-encoded chemical libraries. Drug Discovery Today, 2007, 12, 465-471.	6.4	59
27	Systematic Evaluation and Optimization of Modification Reactions of Oligonucleotides with Amines and Carboxylic Acids for the Synthesis of DNA-Encoded Chemical Libraries. Bioconjugate Chemistry, 2014, 25, 1453-1461.	3.6	56
28	A Specific and Covalent JNKâ€1 Ligand Selected from an Encoded Selfâ€Assembling Chemical Library. Chemistry - A European Journal, 2017, 23, 8152-8155.	3.3	54
29	On the Magnitude of the Chelate Effect for the Recognition of Proteins by Pharmacophores Scaffolded by Self-Assembling Oligonucleotides. Chemistry and Biology, 2006, 13, 225-231.	6.0	53
30	Isolation of a Smallâ€Molecule Inhibitor of the Antiapoptotic Protein Bclâ€xL from a DNAâ€Encoded Chemical Library. ChemMedChem, 2010, 5, 584-590.	3.2	52
31	Drug Discovery with DNA-Encoded Chemical Libraries. Bioconjugate Chemistry, 2010, 21, 1571-1580.	3.6	52
32	Ligand-Based Vascular Targeting of Disease. ChemMedChem, 2007, 2, 22-40.	3.2	51
33	High-throughput sequencing for the identification of binding molecules from DNA-encoded chemical libraries. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4188-4192.	2.2	50
34	Isolation of Potent and Specific Trypsin Inhibitors from a DNA-Encoded Chemical Library. Bioconjugate Chemistry, 2010, 21, 1836-1841.	3.6	49
35	DNAâ€Encoded Chemical Libraries: A Tool for Drug Discovery and for Chemical Biology. ChemBioChem, 2010, 11, 931-937.	2.6	46
36	Diagnostic and Therapeutic Applications of Recombinant Antibodies:Targeting the Extra-Domain B of Fibronectin, A Marker of Tumor Angiogenesis. Current Pharmaceutical Design, 2004, 10, 1537-1549.	1.9	44

#	Article	IF	CITATIONS
37	Sequence Determinants of a Microtubule Tip Localization Signal (MtLS). Journal of Biological Chemistry, 2012, 287, 28227-28242.	3.4	44
38	Affinity Enhancement of Protein Ligands by Reversible Covalent Modification of Neighboring Lysine Residues. Angewandte Chemie - International Edition, 2018, 57, 17178-17182.	13.8	44
39	Screening of Three Transition Metalâ€Mediated Reactions Compatible with DNAâ€Encoded Chemical Libraries. Helvetica Chimica Acta, 2019, 102, e1900033.	1.6	44
40	Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nature Chemistry, 2021, 13, 540-548.	13.6	42
41	Dual-pharmacophore DNA-encoded chemical libraries. Current Opinion in Chemical Biology, 2015, 26, 99-103.	6.1	41
42	Quantitative Assessment of Affinity Selection Performance by Using DNAâ€Encoded Chemical Libraries. ChemBioChem, 2019, 20, 955-962.	2.6	38
43	A DNAâ€Encoded Library of Chemical Compounds Based on Common Scaffolding Structures Reveals the Impact of Ligand Geometry on Protein Recognition. ChemMedChem, 2018, 13, 1303-1307.	3.2	37
44	Quantitative and Qualitative Analysis of Humoral Immunity Reveals Continued and Personalized Evolution in Chronic Viral Infection. Cell Reports, 2020, 30, 997-1012.e6.	6.4	34
45	Interrogating target-specificity by parallel screening of a DNA-encoded chemical library against closely related proteins. Chemical Communications, 2015, 51, 8014-8016.	4.1	32
46	Affinity-capture reagents for protein arrays. Trends in Biotechnology, 2002, 20, s19-s22.	9.3	30
47	Hitâ€Validation Methodologies for Ligands Isolated from DNAâ€Encoded Chemical Libraries. ChemBioChem, 2017, 18, 853-857.	2.6	30
48	A Singleâ€Stranded DNAâ€Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. Advanced Science, 2020, 7, 2001970.	11.2	30
49	Impact of a Central Scaffold on the Binding Affinity of Fragment Pairs Isolated from DNAâ€Encoded Selfâ€Assembling Chemical Libraries. ChemMedChem, 2017, 12, 1748-1752.	3.2	29
50	Critical Evaluation of Photo-cross-linking Parameters for the Implementation of Efficient DNA-Encoded Chemical Library Selections. ACS Combinatorial Science, 2020, 22, 204-212.	3.8	28
51	"Cap-and-Catch―Purification for Enhancing the Quality of Libraries of DNA Conjugates. ACS Combinatorial Science, 2015, 17, 393-398.	3.8	25
52	A DNAâ€Encoded Chemical Library Based on Peptide Macrocycles. Chemistry - A European Journal, 2021, 27, 7160-7167.	3.3	25
53	Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chemical Biology, 2022, 3, 7-17.	4.1	22
54	Quantitative PCR is a Valuable Tool to Monitor the Performance of DNAâ€Encoded Chemical Library Selections. ChemBioChem, 2017, 18, 848-852.	2.6	20

#	Article	IF	Citations
55	Large screening of DNA-compatible reaction conditions for Suzuki and Sonogashira cross-coupling reactions and for reverse amide bond formation. Bioorganic and Medicinal Chemistry, 2021, 41, 116206.	3.0	20
56	Affinity Selections of DNAâ€Encoded Chemical Libraries on Carbonic Anhydrase IXâ€Expressing Tumor Cells Reveal a Dependence on Ligand Valence. Chemistry - A European Journal, 2021, 27, 8985-8993.	3.3	19
57	Unexpected observation of concentration-dependent dissociation rates for antibody–antigen complexes and other macromolecular complexes in competition experiments. Journal of Immunological Methods, 2003, 276, 129-134.	1.4	17
58	Selective Fragments for the CREBBP Bromodomain Identified from an Encoded Selfâ€assembly Chemical Library. ChemMedChem, 2020, 15, 1752-1756.	3.2	15
59	Affinity Enhancement of Protein Ligands by Reversible Covalent Modification of Neighboring Lysine Residues. Angewandte Chemie, 2018, 130, 17424-17428.	2.0	14
60	Comparative evaluation of DNA-encoded chemical selections performed using DNA in single-stranded or double-stranded format. Biochemical and Biophysical Research Communications, 2020, 533, 223-229.	2.1	13
61	Universal encoding of next generation DNA-encoded chemical libraries. Chemical Science, 2022, 13, 967-974.	7.4	12
62	Discovery, affinity maturation and multimerization of small molecule ligands against human tyrosinase and tyrosinase-related protein 1. RSC Medicinal Chemistry, 2021, 12, 363-369.	3.9	10
63	Modular assembly and encoding strategies for dual-display DNA-encoded chemical libraries. Chemical Communications, 2021, 57, 12289-12292.	4.1	10
64	DNA-Encoded Chemical Libraries. QSAR and Combinatorial Science, 2006, 25, 1081-1087.	1.4	9
65	Complexation with a Cognate Antibody Fragment Facilitates Affinity Measurements of Fluorescein-Linked Small Molecule Ligands. Analytical Chemistry, 2020, 92, 10822-10829.	6. 5	9
66	Specific Inhibitor of Placental Alkaline Phosphatase Isolated from a DNA-Encoded Chemical Library Targets Tumor of the Female Reproductive Tract. Journal of Medicinal Chemistry, 2021, 64, 15799-15809.	6.4	8
67	Encoded Self-Assembling Chemical Libraries. Chimia, 2005, 59, 798-802.	0.6	7
68	Discovery and investigation of lead compounds as binders to the Extra-Domain B of the angiogenesis marker, fibronectin. Drug Development Research, 2003, 58, 268-282.	2.9	5
69	A monoclonal antibody prevents aggregation of the NBD1 domain of the cystic fibrosis transmembrane conductance regulator. Protein Engineering, Design and Selection, 2007, 20, 607-614.	2.1	5
70	Automated and enhanced extraction of a small molecule-drug conjugate using an enzyme-inhibitor interaction based SPME tool followed by direct analysis by ESI-MS. Analytical and Bioanalytical Chemistry, 2019, 411, 7387-7398.	3.7	5
71	Editorial overview: Next generation therapeutics: Creating and exploiting the chemistry of large numbers. Current Opinion in Chemical Biology, 2015, 26, iv-v.	6.1	0
72	Special edition on DNA-Encoded chemical libraries. Biochemical and Biophysical Research Communications, 2020, 533, iii-iv.	2.1	0