Jon R Konradsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1314904/publications.pdf

Version: 2024-02-01

64 papers

1,676 citations

331538 21 h-index 302012 39 g-index

66 all docs

66
docs citations

66 times ranked 2346 citing authors

#	Article	IF	Citations
1	Allergy to furry animals: New insights, diagnostic approaches, and challenges. Journal of Allergy and Clinical Immunology, 2015, 135, 616-625.	1.5	145
2	Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. European Respiratory Journal, 2013, 42, 65-78.	3.1	130
3	Impact of COVID-19 on Pediatric Asthma: Practice Adjustments and Disease Burden. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2592-2599.e3.	2.0	117
4	The chitinase-like protein YKL-40: AÂpossible biomarker of inflammation and airway remodeling in severe pediatric asthma. Journal of Allergy and Clinical Immunology, 2013, 132, 328-335.e5.	1.5	111
5	Bronchiolitis needs a revisit: Distinguishing between virus entities and their treatments. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 40-52.	2.7	103
6	Severe childhood asthma and allergy to furry animals: Refined assessment using molecularâ€based allergy diagnostics. Pediatric Allergy and Immunology, 2014, 25, 187-192.	1.1	88
7	lgE antibodies to animalâ€derived lipocalin, kallikrein and secretoglobin are markers of bronchial inflammation in severe childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 661-669.	2.7	72
8	Crystal Structure of the Dog Lipocalin Allergen Can f 2: Implications for Cross-reactivity to the Cat Allergen Fel d 4. Journal of Molecular Biology, 2010, 401, 68-83.	2.0	62
9	Childhood asthma outcomes during the COVIDâ€19 pandemic: Findings from the PeARL multiâ€national cohort. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1765-1775.	2.7	62
10	Transcriptome analysis of controlled and therapy-resistant childhood asthma reveals distinct gene expression profiles. Journal of Allergy and Clinical Immunology, 2015, 136, 638-648.	1.5	59
11	Stratification of asthma phenotypes by airway proteomic signatures. Journal of Allergy and Clinical Immunology, 2019, 144, 70-82.	1.5	59
12	Predicting asthma morbidity in children using proposed markers of Th2â€type inflammation. Pediatric Allergy and Immunology, 2015, 26, 772-779.	1.1	52
13	Urinary Leukotriene E ₄ and Prostaglandin D ₂ Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 37-53.	2.5	49
14	Problematic severe asthma: A proposed approach to identifying children who are severely resistant to therapy. Pediatric Allergy and Immunology, 2011, 22, 9-18.	1.1	45
15	Molecular allergy diagnostics refine characterization of children sensitized to dog dander. Journal of Allergy and Clinical Immunology, 2018, 142, 1113-1120.e9.	1.5	40
16	Intralymphatic immunotherapy in pollen-allergic young adults with rhinoconjunctivitis and mild asthma: AÂrandomized trial. Journal of Allergy and Clinical Immunology, 2020, 145, 1005-1007.e7.	1.5	35
17	The cytokine interleukin-26 as a biomarker in pediatric asthma. Respiratory Research, 2016, 17, 32.	1.4	31
18	Subnormal levels of vitamin D are associated with acute wheeze in young children. Acta Paediatrica, International Journal of Paediatrics, 2014, 103, 856-861.	0.7	29

#	Article	IF	CITATIONS
19	Identifying problematic severe asthma in the individual child – does lung function matter?*. Acta Paediatrica, International Journal of Paediatrics, 2010, 99, 404-410.	0.7	28
20	Food allergy and hypersensitivity reactions in children and adults—A review. Journal of Internal Medicine, 2022, 291, 283-302.	2.7	28
21	The clinical benefit of evaluating healthâ€related qualityâ€ofâ€life in children with problematic severe asthma. Acta Paediatrica, International Journal of Paediatrics, 2011, 100, 1454-1460.	0.7	25
22	Impaired skin barrier and allergic sensitization in early infancy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1464-1476.	2.7	24
23	An update on paediatric asthma. European Respiratory Review, 2012, 21, 175-185.	3.0	22
24	Rhinovirusâ€specific antibody responses in preschool children with acute wheeze reflect severity of respiratory symptoms. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1728-1735.	2.7	21
25	Allergy testing in children with persistent asthma: comparison of four diagnostic methods. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 590-597.	2.7	21
26	Protein profiles of <scp>CCL</scp> 5, <scp>HPGDS</scp> , and <scp>NPSR</scp> 1 in plasma reveal association with childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1357-1361.	2.7	18
27	High basophil allergen sensitivity (CDâ€sens) is associated with severe allergic asthma in children. Pediatric Allergy and Immunology, 2012, 23, 376-384.	1.1	17
28	A longitudinal assessment of circulating <scp>YKL</scp> â€40 levels in preschool children with wheeze. Pediatric Allergy and Immunology, 2017, 28, 79-85.	1.1	15
29	Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux. European Respiratory Journal, 2019, 53, 1900453.	3.1	15
30	The Swedish National Airway Register (SNAR): development, design and utility to date. European Clinical Respiratory Journal, 2020, 7, 1833412.	0.7	12
31	Prevalence and earlyâ€ife risk factors for tree nut sensitization and allergy in young adults. Clinical and Experimental Allergy, 2021, 51, 1429-1437.	1.4	11
32	Unusual and Unexpected Allergic Reactions Can Be Unraveled by Molecular Allergy Diagnostics. International Archives of Allergy and Immunology, 2021, 182, 904-916.	0.9	9
33	Extract and molecularâ€based early infant sensitization and associated factors—A PreventADALL study. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2730-2739.	2.7	9
34	Severe COVID-19 among patients with asthma and COPD: a report from the Swedish National Airway Register. Therapeutic Advances in Respiratory Disease, 2021, 15, 175346662110497.	1.0	9
35	Preschool wheezing diagnosis and management–Survey of physicians' and caregivers' perspective. Pediatric Allergy and Immunology, 2020, 31, 206-209.	1.1	8
36	Nasal upregulation of <i>CST1</i> in dog-sensitised children with severe allergic airway disease. ERJ Open Research, 2021, 7, 00917-2020.	1,1	8

#	Article	IF	Citations
37	Transcriptome changes during peanut oral immunotherapy and omalizumab treatment. Pediatric Allergy and Immunology, 2022, 33, e13682.	1.1	8
38	Uncontrolled asthma predicts severe COVID-19: a report from the Swedish National Airway Register. Therapeutic Advances in Respiratory Disease, 2022, 16, 175346662210911.	1.0	8
39	Preschool wheezing and asthma in children: A systematic review of guidelines and quality appraisal with the AGREE II instrument. Pediatric Allergy and Immunology, 2021, 32, 92-105.	1.1	7
40	Microarray Technology May Reveal the Contribution of Allergen Exposure and Rhinovirus Infections as Possible Triggers for Acute Wheezing Attacks in Preschool Children. Viruses, 2021, 13, 915.	1.5	7
41	Update on the current methods for the diagnosis and treatment of severe childhood asthma. Expert Review of Respiratory Medicine, 2015, 9, 769-777.	1.0	6
42	Basophil activation testing, IgG, and IgG4 in the diagnosis of dog allergy in children with and without a dog at home. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1269-1272.	2.7	6
43	Early Life Wheeze and Risk Factors for Asthma—A Revisit at Age 7 in the GEWAC-Cohort. Children, 2021, 8, 488.	0.6	6
44	IL-26 in asthma and COPD. Expert Review of Respiratory Medicine, 2022, 16, 293-301.	1.0	6
45	A Novel Association between YKL-40, a Marker of Structural Lung Disease, and Short Telomere Length in 10-Year-Old Children with Bronchopulmonary Dysplasia. Children, 2021, 8, 80.	0.6	5
46	Predictors of severe COVID-19 in a registry-based Swedish cohort of patients with COPD. European Respiratory Journal, 2021, 58, 2101920.	3.1	5
47	Development of Sensitization to Multiple Allergen Molecules from Preschool to School Age Is Related to Asthma. International Archives of Allergy and Immunology, 2022, 183, 628-639.	0.9	5
48	Allergic sensitization to lipocalins reflects asthma morbidity in dog dander sensitized children. Clinical and Translational Allergy, 2022, 12, e12149.	1.4	5
49	Molecular Allergen-Specific IgE Recognition Profiles and Cumulative Specific IgE Levels Associated with Phenotypes of Cat Allergy. International Journal of Molecular Sciences, 2022, 23, 6984.	1.8	5
50	Reply. Journal of Allergy and Clinical Immunology, 2015, 135, 1666-1667.	1.5	3
51	Identification Of Children With Severe Therapy Resistant Asthma. Journal of Allergy and Clinical Immunology, 2010, 125, AB70.	1.5	2
52	YKLâ€40 is a proposed biomarker of inflammation and remodelling elevated in children with bronchopulmonary dysplasia compared to asthma. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 641-642.	0.7	2
53	Late Breaking Abstract - Systemic IL-26 correlates with improved asthma control in children with allergic sensitization. , $2018,\ldots$		1
54	Severe Asthma in School Children-Impact on Quality of Life and Correlations to Objective Markers Journal of Allergy and Clinical Immunology, 2009, 123, S117-S117.	1.5	0

#	Article	IF	Citations
55	Genome Wide Transcriptome Analysis Suggests Novel Mechanisms In Severe Childhood Asthma. , 2011, ,		O
56	Systemic IL-17 Signaling Relates to Gender, Disease Severity and Use of Oral Steroids in Children with Asthma. Journal of Allergy and Clinical Immunology, 2015, 135, AB180.	1.5	0
57	Increased Serum Levels of Inflammatory Cytokines in Severe Childhood Asthma. Journal of Allergy and Clinical Immunology, 2015, 135, AB84.	1.5	O
58	Microbiological findings in children with severe asthma. Journal of Allergy and Clinical Immunology, 2018, 141, AB99.	1.5	0
59	Reply. Journal of Allergy and Clinical Immunology, 2019, 143, 1658-1659.	1.5	O
60	Correspondence to "Bronchiolitis needs a revisit: Distinguishing between virus entities and their treatments― Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1529-1530.	2.7	0
61	High-resolution targeted bisulfite sequencing reveals blood cell type-specific DNA methylation patterns in IL13 and ORMDL3. Clinical Epigenetics, 2021, 13, 106.	1.8	O
62	LATE-BREAKING ABSTRACT: Rhinovirus species and specific antibody response in preschool children with acute wheeze. , 2015 , , .		0
63	Room for improvement for smoking cessation support in asthma and COPD - a perspective from the Swedish National Airway Register. , 2020, , .		0
64	The first years of the Swedish National Airway register. , 2020, , .		0