Agné Kulyte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1314643/publications.pdf

Version: 2024-02-01

28 papers

1,133 citations

16 h-index

563245 28 g-index

29 all docs

29 docs citations

times ranked

29

2807 citing authors

#	Article	IF	Citations
1	Shared genetic loci for body fat storage and adipocyte lipolysis in humans. Scientific Reports, 2022, 12, 3666.	1.6	3
2	Genome-Wide Association Study Identifies Genetic Loci Associated With Fat Cell Number and Overlap With Genetic Risk Loci for Type 2 Diabetes. Diabetes, 2022, 71, 1350-1362.	0.3	3
3	Circadian Rhythms in Hormone-sensitive Lipase in Human Adipose Tissue: Relationship to Meal Timing and Fasting Duration. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4407-e4416.	1.8	12
4	Adiposeâ€specific inactivation of thyroid stimulating hormone receptors in mice modifies body weight, temperature and gene expression in adipocytes. Physiological Reports, 2020, 8, e14538.	0.7	9
5	Genome-wide association study of adipocyte lipolysis in the GENetics of adipocyte lipolysis (GENiAL) cohort. Molecular Metabolism, 2020, 34, 85-96.	3.0	11
6	Genome-Wide Association Study of Diabetogenic Adipose Morphology in the GENetics of Adipocyte Lipolysis (GENiAL) Cohort. Cells, 2020, 9, 1085.	1.8	7
7	The Rho GTPase RND3 regulates adipocyte lipolysis. Metabolism: Clinical and Experimental, 2019, 101, 153999.	1.5	14
8	Human-Specific Function of IL-10 in Adipose Tissue Linked to Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4552-4562.	1.8	32
9	MicroRNA-27a/b-3p and PPARG regulate SCAMP3 through a feed-forward loop during adipogenesis. Scientific Reports, 2019, 9, 13891.	1.6	17
10	Monitoring of chromatin organization in live cells by FRIC. Effects of the inner nuclear membrane protein Samp1. Nucleic Acids Research, 2019, 47, e49-e49.	6.5	6
11	FAM13A and POM121C are candidate genes for fasting insulin: functional follow-up analysis of a genome-wide association study. Diabetologia, 2018, 61, 1112-1123.	2.9	24
12	MicroRNAs-361-5p and miR-574-5p associate with human adipose morphology and regulate EBF1 expression in white adipose tissue. Molecular and Cellular Endocrinology, 2018, 472, 50-56.	1.6	18
13	Transforming Growth Factor-Î ² 3 Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. Cell Reports, 2018, 25, 551-560.e5.	2.9	68
14	Mapping of biguanide transporters in human fat cells and their impact on lipolysis. Diabetes, Obesity and Metabolism, 2018, 20, 2416-2425.	2.2	12
15	Comprehensive functional screening of miRNAs involved in fat cell insulin sensitivity among women. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E482-E494.	1.8	29
16	Epigenetic Regulation of PLIN 1 in Obese Women and its Relation to Lipolysis. Scientific Reports, 2017, 7, 10152.	1.6	19
17	Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution. Diabetes, 2017, 66, 218-230.	0.3	27
18	Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women. PLoS ONE, 2017, 12, e0178485.	1.1	26

Agné Kulyte

#	Article	lF	CITATION
19	Adipose and Circulating CCL18 Levels Associate With Metabolic Risk Factors in Women. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4021-4029.	1.8	32
20	An AMP-activated protein kinase–stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 2016, 22, 1120-1130.	15.2	106
21	Whole-Exome Sequencing Suggests <i>LAMB3</i> as a Susceptibility Gene for Morbid Obesity. Diabetes, 2016, 65, 2980-2989.	0.3	16
22	MicroRNA regulatory networks in human adipose tissue and obesity. Nature Reviews Endocrinology, 2015, 11, 276-288.	4.3	377
23	MicroRNA-193b Controls Adiponectin Production in Human White Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1084-E1088.	1.8	51
24	Additive Effects of MicroRNAs and Transcription Factors on CCL2 Production in Human White Adipose Tissue. Diabetes, 2014, 63, 1248-1258.	0.3	38
25	MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E267-E274.	1.8	57
26	MicroRNAs Regulate Human Adipocyte Lipolysis: Effects of miR-145 Are Linked to TNF-α. PLoS ONE, 2014, 9, e86800.	1.1	84
27	CIDEA interacts with liver X receptors in white fat cells. FEBS Letters, 2011, 585, 744-748.	1.3	9
28	MTCH2 in Human White Adipose Tissue and Obesity. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1661-E1665.	1.8	26