
William F Goins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1314508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agent-based computational modeling of glioblastoma predicts that stromal density is central to oncolytic virus efficacy. IScience, 2022, 25, 104395.	4.1	23
2	THER-02. Pediatric brain tumor cultures reveal differential susceptibility to four oncolytic viruses. Neuro-Oncology, 2022, 24, i186-i186.	1.2	0
3	Evaluation of parameters for efficient purification and long-term storage of herpes simplex virus-based vectors. Molecular Therapy - Methods and Clinical Development, 2022, 26, 132-143.	4.1	3
4	Oncolytic HSV Vectors and Anti-Tumor Immunity. Current Issues in Molecular Biology, 2021, 41, 381-468.	2.4	8
5	Varicella-zoster virus early infection but not complete replication is required for the induction of chronic hypersensitivity in rat models of postherpetic neuralgia. PLoS Pathogens, 2021, 17, e1009689.	4.7	8
6	Treatment of glioblastoma with current oHSV variants reveals differences in efficacy and immune cell recruitment. Molecular Therapy - Oncolytics, 2021, 22, 444-453.	4.4	1
7	EXTH-61. MODULATION OF THE IL-27 RECEPTOR SIGNALING PATHWAY IN GLIOBLASTOMA AND ONCOLYTIC VIROTHERAPY. Neuro-Oncology, 2021, 23, vi177-vi177.	1.2	0
8	A Guide to Preclinical Models of Zoster-Associated Pain and Postherpetic Neuralgia. Current Topics in Microbiology and Immunology, 2021, , 189-221.	1.1	2
9	Generation of an Oncolytic Herpes Simplex Viral Vector Completely Retargeted to the GDNF Receptor GFRα1 for Specific Infection of Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 8815.	4.1	7
10	Glioblastoma infiltration of both tumor- and virus-antigen specific cytotoxic T cells correlates with experimental virotherapy responses. Scientific Reports, 2020, 10, 5095.	3.3	28
11	Protocol Optimization for the Production of the Non-Cytotoxic JΔNI5 HSV Vector Deficient in Expression of Immediately Early Genes. Molecular Therapy - Methods and Clinical Development, 2020, 17, 612-621.	4.1	5
12	Engineering HSV-1 Vectors for Gene Therapy. Methods in Molecular Biology, 2020, 2060, 73-90.	0.9	17
13	GBM-Targeted oHSV Armed with Matrix Metalloproteinase 9 Enhances Anti-tumor Activity and Animal Survival. Molecular Therapy - Oncolytics, 2019, 15, 214-222.	4.4	28
14	The effect of herpes simplex virus vectorâ€mediated gene therapy of protein phosphatase 1α on bladder overactivity and nociception. Neurourology and Urodynamics, 2019, 38, 582-590.	1.5	1
15	Arming an Oncolytic Herpes Simplex Virus Type 1 with a Single-chain Fragment Variable Antibody against PD-1 for Experimental Glioblastoma Therapy. Clinical Cancer Research, 2019, 25, 290-299.	7.0	88
16	Toxicity and Efficacy of a Novel GADD34-expressing Oncolytic HSV-1 for the Treatment of Experimental Glioblastoma. Clinical Cancer Research, 2018, 24, 2574-2584.	7.0	40
17	Effects of herpes simplex virus vectors encoding poreless TRPV1 or protein phosphatase 1α in a rat cystitis model induced by hydrogen peroxide. Gene Therapy, 2018, 25, 20-26.	4.5	1
18	Myelolytic Treatments Enhance Oncolytic Herpes Virotherapy in Models of Ewing Sarcoma by Modulating the Immune Microenvironment. Molecular Therapy - Oncolytics, 2018, 11, 62-74.	4.4	41

#	Article	IF	CITATIONS
19	Herpes Simplex Virus Vectors for Gene Transfer to the Central Nervous System. Diseases (Basel,) Tj ETQq1 1 0.784	4314 rgBT 2.5	/Overlock
20	Deletion of the Virion Host Shut-off Gene Enhances Neuronal-Selective Transgene Expression from an HSV Vector Lacking Functional IE Genes. Molecular Therapy - Methods and Clinical Development, 2017, 6, 79-90.	4.1	14
21	MnSOD mediated by HSV vectors in the periaqueductal gray suppresses morphine withdrawal in rats. Gene Therapy, 2017, 24, 314-324.	4.5	10
22	Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury. Neuroscience, 2017, 364, 190-201.	2.3	17
23	An HSV-based library screen identifies PP1α as a negative TRPV1 regulator with analgesic activity in models of pain. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16040.	4.1	9
24	Retargeting of herpes simplex virus (HSV) vectors. Current Opinion in Virology, 2016, 21, 93-101.	5.4	24
25	Current Gene Therapy using Viral Vectors for Chronic Pain. Molecular Pain, 2015, 11, s12990-015-0018.	2.1	55
26	Interferon-stimulated Gene 15 (ISG15) and ISG15-linked Proteins Can Associate with Members of the Selective Autophagic Process, Histone Deacetylase 6 (HDAC6) and SQSTM1/p62. Journal of Biological Chemistry, 2015, 290, 1485-1495.	3.4	85
27	Gene Therapy for Neurological Diseases. , 2015, , 129-146.		0
28	Herpes Simplex Virus Vector-Mediated Gene Delivery of Poreless TRPV1 Channels Reduces Bladder Overactivity and Nociception in Rats. Human Gene Therapy, 2015, 26, 734-742.	2.7	18
29	Neuronal changes induced by Varicella Zoster Virus in a rat model of postherpetic neuralgia. Virology, 2015, 482, 167-180.	2.4	28
30	Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1632-41.	7.1	51
31	Use of miRNA Response Sequences to Block Off-target Replication and Increase the Safety of an Unattenuated, Glioblastoma-targeted Oncolytic HSV. Molecular Therapy, 2015, 23, 99-107.	8.2	69
32	Histone deacetylase 6 inhibition enhances oncolytic viral replication in glioma. Journal of Clinical Investigation, 2015, 125, 4269-4280.	8.2	57
33	Relief of pain induced by varicella-zoster virus in a rat model of post-herpetic neuralgia using a herpes simplex virus vector expressing enkephalin. Gene Therapy, 2014, 21, 694-702.	4.5	24
34	Gene Therapy: Charting a Future Course—Summary of a National Institutes of Health Workshop, April 12, 2013. Human Gene Therapy, 2014, 25, 488-497.	2.7	12
35	Engineering HSV-1 Vectors for Gene Therapy. Methods in Molecular Biology, 2014, 1144, 63-79.	0.9	51
36	Oncolytic HSV virotherapy in murine sarcomas differentially triggers an antitumor T-cell response in the absence of virus permissivity. Molecular Therapy - Oncolytics, 2014, 1, 14010.	4.4	33

#	Article	IF	CITATIONS
37	Effects of Herpes Simplex Virus Vector–Mediated Enkephalin Gene Therapy on Bladder Overactivity and Nociception. Human Gene Therapy, 2013, 24, 170-180.	2.7	18
38	Expression of HSV-1 receptors in EBV-associated lymphoproliferative disease determines susceptibility to oncolytic HSV. Gene Therapy, 2013, 20, 761-769.	4.5	12
39	Effective Treatment of an Orthotopic Xenograft Model of Human Glioblastoma Using an EGFR-retargeted Oncolytic Herpes Simplex Virus. Molecular Therapy, 2013, 21, 561-569.	8.2	94
40	VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells. Molecular Therapy, 2013, 21, 1014-1023.	8.2	34
41	Progress in gene therapy for neurological disorders. Nature Reviews Neurology, 2013, 9, 277-291.	10.1	202
42	Herpes Simplex Virus Vector Mediated Gene Therapy of Tumor Necrosis Factor-α Blockade for Bladder Overactivity and Nociception in Rats. Journal of Urology, 2013, 189, 366-373.	0.4	24
43	Effect of herpes simplex virus vector-mediated interleukin-4 gene therapy on bladder overactivity and nociception. Gene Therapy, 2013, 20, 194-200.	4.5	16
44	Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiology of Disease, 2012, 48, 255-270.	4.4	51
45	Generation of Replication-Competent and -Defective HSV Vectors. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5615-pdb.prot5615.	0.3	7
46	Varicella zoster virus-induced pain and post-herpetic neuralgia in the human host and in rodent animal models. Journal of NeuroVirology, 2011, 17, 590-599.	2.1	33
47	HSV Delivery of a Ligand-regulated Endogenous Ion Channel Gene to Sensory Neurons Results in Pain Control Following Channel Activation. Molecular Therapy, 2011, 19, 500-506.	8.2	24
48	Equine herpesvirus type 1 (EHV-1) utilizes microtubules, dynein, and ROCK1 to productively infect cells. Veterinary Microbiology, 2010, 141, 12-21.	1.9	35
49	A Double Mutation in Glycoprotein gB Compensates for Ineffective gD-Dependent Initiation of Herpes Simplex Virus Type 1 Infection. Journal of Virology, 2010, 84, 12200-12209.	3.4	48
50	Herpes Simplex Virus Vectors. , 2010, , 69-85.		0
51	Suppression of Detrusor-Sphincter Dyssynergia by Herpes Simplex Virus Vector Mediated Gene Delivery of Glutamic Acid Decarboxylase in Spinal Cord Injured Rats. Journal of Urology, 2010, 184, 1204-1210.	0.4	27
52	Generation of Herpesvirus Entry Mediator (HVEM)-Restricted Herpes Simplex Virus Type 1 Mutant Viruses: Resistance of HVEM-Expressing Cells and Identification of Mutations That Rescue Nectin-1 Recognition. Journal of Virology, 2009, 83, 2951-2961.	3.4	31
53	Gene Therapy for Bladder Overactivity and Nociception with Herpes Simplex Virus Vectors Expressing Preproenkephalin. Human Gene Therapy, 2009, 20, 63-71.	2.7	38
54	Herpes simplex virus vector-mediated gene delivery for the treatment of lower urinary tract pain. Gene Therapy, 2009, 16, 558-569.	4.5	17

#	Article	IF	CITATIONS
55	Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord-injured rats. Gene Therapy, 2009, 16, 660-668.	4.5	40
56	Gene Therapy for Neurogenic Erectile Dysfunction. LUTS: Lower Urinary Tract Symptoms, 2009, 1, S44.	1.3	0
57	Construction and Production of Recombinant Herpes Simplex Virus Vectors. Methods in Molecular Biology, 2008, 433, 97-103.	0.9	12
58	Equine Herpesvirus 1 Enters Cells by Two Different Pathways, and Infection Requires the Activation of the Cellular Kinase ROCK1. Journal of Virology, 2007, 81, 10879-10889.	3.4	62
59	Gene therapy applications for the treatment of neuropathic pain. Expert Review of Neurotherapeutics, 2007, 7, 487-506.	2.8	20
60	Herpes simplex virus vector-mediated delivery of glial cell line-derived neurotrophic factor rescues erectile dysfunction following cavernous nerve injury. Gene Therapy, 2007, 14, 1344-1352.	4.5	38
61	Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection. Virology, 2007, 360, 477-491.	2.4	14
62	Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's disease-related amyloid-β peptide in vivo. Gene Therapy, 2006, 13, 1068-1079.	4.5	94
63	Soluble V Domain of Nectin-1/HveC Enables Entry of Herpes Simplex Virus Type 1 (HSV-1) into HSV-Resistant Cells by Binding to Viral Clycoprotein D. Journal of Virology, 2006, 80, 138-148.	3.4	43
64	A new transgene reporter for in vivo magnetic resonance imaging. Nature Medicine, 2005, 11, 450-454.	30.7	419
65	HSV vector-mediated transduction and GDNF secretion from adipose cells. Gene Therapy, 2005, 12, 48-58.	4.5	13
66	HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Therapy, 2005, 12, 891-901.	4.5	87
67	Herpes Simplex Virus Targeting to the EGF Receptor by a gD-Specific Soluble Bridging Molecule. Molecular Therapy, 2005, 11, 617-626.	8.2	44
68	Equine Herpesvirus 1 Utilizes a Novel Herpesvirus Entry Receptor. Journal of Virology, 2005, 79, 3169-3173.	3.4	25
69	IMPROVEMENT IN ERECTILE DYSFUNCTION AFTER NEUROTROPHIC FACTOR GENE THERAPY IN DIABETIC RATS. Journal of Urology, 2005, 173, 1820-1824.	0.4	51
70	Delivery Using Herpes Simplex Virus: An Overview. , 2004, 246, 257-300.		35
71	Delivery of Herpes Simplex Virus-Based Vectors to Stem Cells. , 2004, 246, 339-352.		1
72	Gene Transfer to Glial Tumors Using Herpes Simplex Virus. , 2004, 246, 323-338.		7

#	Article	IF	CITATIONS
73	Immobilized Cobalt Affinity Chromatography Provides a Novel, Efficient Method for Herpes Simplex Virus Type 1 Gene Vector Purification. Journal of Virology, 2004, 78, 8994-9006.	3.4	38
74	Protective effect of herpes simplex virus-mediated neurotrophin gene transfer in cisplatin neuropathy. Brain, 2004, 127, 929-939.	7.6	54
75	Gene Therapy Using Replication-Defective Herpes Simplex Virus Vectors Expressing Nerve Growth Factor in a Rat Model of Diabetic Cystopathy. Diabetes, 2004, 53, 2723-2730.	0.6	92
76	Protective effect of HSV-mediated gene transfer of nerve growth factor in pyridoxine neuropathy demonstrates functional activity of trkA receptors in large sensory neurons of adult animals. European Journal of Neuroscience, 2003, 17, 732-740.	2.6	39
77	Transgene-mediated enkephalin release enhances the effect of morphine and evades tolerance to produce a sustained antiallodynic effect in neuropathic pain. Pain, 2003, 102, 135-142.	4.2	126
78	Virus-based vectors for gene expression in mammalian cells: Herpes simplex virus. New Comprehensive Biochemistry, 2003, 38, 27-54.	0.1	1
79	Redirecting the Tropism of HSV-1 for Gene Therapy Applications. , 2003, , 377-403.		0
80	Development of Replication-Defective Herpes Simplex Virus Vectors. , 2002, 69, 481-507.		15
81	Herpes Simplex-Mediated Gene Transfer of Nerve Growth Factor Protects Against Peripheral Neuropathy in Streptozotocin-Induced Diabetes in the Mouse. Diabetes, 2002, 51, 2227-2232.	0.6	129
82	Construction of Replicationâ€Defective Herpes Simplex Virus Vectors. Current Protocols in Human Genetics, 2002, 33, Unit 12.11.	3.5	4
83	Gene Transfer to Muscle and Spinal Cord Using Herpes Simplex Virus-Based Vectors. , 2002, , 179-200.		2
84	Herpes vector-mediated expression of proenkephalin reduces bone cancer pain. Annals of Neurology, 2002, 52, 662-665.	5.3	109
85	Effect of genetic background and culture conditions on the production of herpesvirus-based gene therapy vectors. Biotechnology and Bioengineering, 2002, 77, 685-692.	3.3	42
86	Effect of temperature, medium composition, and cell passage on production of herpes-based viral vectors. Biotechnology and Bioengineering, 2002, 79, 112-119.	3.3	25
87	Replication-defective genomic herpes simplex vectors: design and production. Current Opinion in Biotechnology, 2002, 13, 424-428.	6.6	45
88	Evaluation of Infection Parameters in the Production of Replication-Defective HSV-1 Viral Vectors. Biotechnology Progress, 2002, 18, 476-482.	2.6	25
89	HERPES SIMPLEX VIRUS MEDIATED NERVE GROWTH FACTOR EXPRESSION IN BLADDER AND AFFERENT NEURONS: POTENTIAL TREATMENT FOR DIABETIC BLADDER DYSFUNCTION. Journal of Urology, 2001, 165, 1748-1754.	0.4	96
90	Multiple Applications For Replication-Defective Herpes Simplex Virus Vectors. Stem Cells, 2001, 19, 358-377.	3.2	69

#	Article	IF	CITATIONS
91	Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Therapy, 2001, 8, 551-556.	4.5	160
92	Targeting gene expression using HSV vectors. Advanced Drug Delivery Reviews, 2001, 53, 155-170.	13.7	23
93	Herpesvirus-Mediated Systemic Delivery of Nerve Growth Factor. Molecular Therapy, 2001, 3, 61-69.	8.2	41
94	HERPES SIMPLEX VIRUS MEDIATED NERVE GROWTH FACTOR EXPRESSION IN BLADDER AND AFFERENT NEURONS: POTENTIAL TREATMENT FOR DIABETIC BLADDER DYSFUNCTION. Journal of Urology, 2001, , 1748-1754.	0.4	6
95	Effect of Protease Inhibitors on Yield of HSV-1-Based Viral Vectors. Biotechnology Progress, 2000, 16, 493-496.	2.6	13
96	Herpes Simplex Virus-Enhanced Cationic Lipid/DNA-Mediated Transfection. BioTechniques, 2000, 29, 810-814.	1.8	3
97	Connexin 43-Enhanced Suicide Gene Therapy Using Herpesviral Vectors. Molecular Therapy, 2000, 1, 71-81.	8.2	87
98	Pseudotyping of Glycoprotein D-Deficient Herpes Simplex Virus Type 1 with Vesicular Stomatitis Virus Glycoprotein G Enables Mutant Virus Attachment and Entry. Journal of Virology, 2000, 74, 2481-2487.	3.4	55
99	Herpes simplex virus vector-mediated dystrophin gene transfer and expression in MDX mouse skeletal muscle. Journal of Gene Medicine, 1999, 1, 280-289.	2.8	69
100	Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes virus. Proceedings of the United States of America, 1999, 96, 3211-3216.	7.1	215
101	Herpes Simplex Virus Type 1 Vector-Mediated Expression of Nerve Growth Factor Protects Dorsal Root Ganglion Neurons from Peroxide Toxicity. Journal of Virology, 1999, 73, 519-532.	3.4	90
102	Genetic Studies Exposing the Splicing Events Involved in Herpes Simplex Virus Type 1 Latency-Associated Transcript Production during Lytic and Latent Infection. Journal of Virology, 1999, 73, 3866-3876.	3.4	23
103	Development of Replication-Defective Herpes Simplex Virus Vectors. , 1997, 7, 79-102.		21
104	Engineering Herpes Simplex. Advances in Pharmacology, 1997, 40, 103-136b.	2.0	26
105	Development of an HSV-Based Vector for the Treatment of Parkinson's Disease. Experimental Neurology, 1997, 144, 103-112.	4.1	18
106	Progress in development of herpes simplex virus gene vectors for treatment of rheumatoid arthritis. Advanced Drug Delivery Reviews, 1997, 27, 41-57.	13.7	29
107	Replication-defective herpes simplex virus vectors for gene transfer in vivo Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11319-11320.	7.1	163
108	Gene Transfer to Neurons Using Herpes Simplex Virus-Based Vectors. Annual Review of Neuroscience, 1996, 19, 265-287.	10.7	166

#	Article	IF	CITATIONS
109	[8] Site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome using a cell-free cre-lox recombination system. Methods in Molecular Genetics, 1995, 7, 114-130.	0.6	11
110	HSV as a gene transfer vector for the nervous system. Molecular Biotechnology, 1995, 4, 87-99.	2.4	26
111	Herpes Simplex Virus as a Gene-Delivery Vector for the Central Nervous System. , 1995, , 1-23.		10
112	Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. Journal of Virology, 1995, 69, 7899-7908.	3.4	105
113	Gene transfer to brain using herpes simplex virus vectors. Annals of Neurology, 1994, 35, S28-S34.	5.3	61
114	Development of Herpes Simplex Virus Vectors for Gene Transfer to the Central Nervous System. , 1994, , 281-302.		6
115	Neurovirulence of Herpes Simplex Virus Type 1 Accessory Gene Mutants. Frontiers of Virology, 1994, , 222-237.	0.6	4
116	A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. Journal of Virology, 1994, 68, 2239-2252.	3.4	186
117	Resistance of herpes simplex virus type 2 to neomycin maps to the N-terminal portion of glycoprotein C. Journal of Virology, 1993, 67, 2434-2441.	3.4	22
118	<i>In Vivo</i> Expression of β-Galactosidase in Hippocampal Neurons by HSV-Mediated Gene Transfer. Human Gene Therapy, 1992, 3, 11-19.	2.7	218
119	Genetic analysis of type-specific antigenic determinants of herpes simplex virus glycoprotein C. Journal of Virology, 1992, 66, 4864-4873.	3.4	24
120	Oligomer formation of the gB glycoprotein of herpes simplex virus type 1. Journal of Virology, 1991, 65, 4275-4283.	3.4	41
121	Advances in Engineering HSV Vectors for Gene Transfer to the Nervous System. , 0, , 127-163.		1