
Nian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1313611/publications.pdf Version: 2024-02-01

NIAN WANC

#	Article	IF	CITATIONS
1	Biallelic Editing of the <i>LOB1</i> Promoter via CRISPR/Cas9 Creates Canker-Resistant †Duncan' Grapefruit. Phytopathology, 2022, 112, 308-314.	1.1	33
2	Rapid Evaluation of the Resistance of Citrus Germplasms Against <i>Xanthomonas citri</i> subsp. <i>citri</i> . Phytopathology, 2022, 112, 765-774.	1.1	5
3	<i>Candidatus</i> Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. Phytopathology, 2022, 112, 55-68.	1.1	14
4	Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nature Communications, 2022, 13, 529.	5.8	65
5	â€~ <i>Candidatus</i> Liberibacter' Pathosystems at the Forefront of Agricultural and Biological Research Challenges. Phytopathology, 2022, 112, 7-10.	1.1	3
6	LbCas12a-D156R Efficiently Edits LOB1 Effector Binding Elements to Generate Canker-Resistant Citrus Plants. Cells, 2022, 11, 315.	1.8	17
7	Base Editors for Citrus Gene Editing. Frontiers in Genome Editing, 2022, 4, 852867.	2.7	22
8	A Fluorescent Reporter-Based Evaluation Assay for Antibacterial Components Against Xanthomonas citri subsp. citri. Frontiers in Microbiology, 2022, 13, .	1.5	0
9	The Total Population Size of â€~ <i>Candidatus</i> Liberibacter asiaticus' Inside the Phloem of Citrus Trees and the Corresponding Metabolic Burden Related to Huanglongbing Disease Development. Phytopathology, 2021, 111, 1122-1128.	1.1	10
10	Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas. PLoS Genetics, 2021, 17, e1009310.	1.5	21
11	Evaluation of the control effect of SAR inducers against citrus Huanglongbing applied by foliar spray, soil drench or trunk injection. Phytopathology Research, 2021, 3, .	0.9	11
12	The HrpG/HrpX Regulon of Xanthomonads—An Insight to the Complexity of Regulation of Virulence Traits in Phytopathogenic Bacteria. Microorganisms, 2021, 9, 187.	1.6	24
13	A promising plant defense peptide against citrus Huanglongbing disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
14	The transcriptome landscapes of citrus leaf in different developmental stages. Plant Molecular Biology, 2021, 106, 349-366.	2.0	9
15	PthAW1, a transcription activator-like effector of Xanthomonas citri subsp. citri, promotes host specific immune responses. Molecular Plant-Microbe Interactions, 2021, 34, 1033-1047.	1.4	4
16	The Citrus Microbiome: From Structure and Function to Microbiome Engineering and Beyond. Phytobiomes Journal, 2021, 5, 249-262.	1.4	16
17	Spatiotemporal Dynamics of â€~ <i>Candidatus</i> Liberibacter asiaticus' Colonization Inside Citrus Plant and Huanglongbing Disease Development. Phytopathology, 2021, 111, 921-928.	1.1	22
18	Examination of the Global Regulon of CsrA in <i>Xanthomonas citri</i> subsp. <i>citri</i> Using Quantitative Proteomics and Other Approaches. Molecular Plant-Microbe Interactions, 2021, 34, 1236-1249.	1.4	3

#	Article	IF	CITATIONS
19	Region-Wide Comprehensive Implementation of Roguing Infected Trees, Tree Replacement, and Insecticide Applications Successfully Controls Citrus Huanglongbing. Phytopathology, 2021, 111, 1361-1368.	1.1	22
20	Residue Dynamics of Streptomycin in Citrus Delivered by Foliar Spray and Trunk Injection and Effect on â€~ <i>Candidatus</i> Liberibacter asiaticus' Titer. Phytopathology, 2021, 111, 1095-1103.	1.1	24
21	Highly Efficient Generation of Canker-Resistant Sweet Orange Enabled by an Improved CRISPR/Cas9 System. Frontiers in Plant Science, 2021, 12, 769907.	1.7	28
22	Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathogens, 2021, 17, e1010071.	2.1	23
23	Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen <i>Xanthomonas</i> . FEMS Microbiology Reviews, 2020, 44, 1-32.	3.9	148
24	The flagella of â€~ <i>Candidatus</i> Liberibacter asiaticus' and its movement <i>in planta</i> . Molecular Plant Pathology, 2020, 21, 109-123.	2.0	35
25	Sec-Delivered Effector 1 (SDE1) of â€~ <i>Candidatus</i> Liberibacter asiaticus' Promotes Citrus Huanglongbing. Molecular Plant-Microbe Interactions, 2020, 33, 1394-1404.	1.4	27
26	Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations. Plant Molecular Biology, 2020, 104, 297-307.	2.0	51
27	Citrus CsACD2 Is a Target of <i>Candidatus</i> Liberibacter Asiaticus in Huanglongbing Disease. Plant Physiology, 2020, 184, 792-805.	2.3	60
28	Special issue on bacterial citrus diseases: part I. Tropical Plant Pathology, 2020, 45, 163-165.	0.8	1
29	Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression. Molecular and Cellular Proteomics, 2020, 19, 1936-1952.	2.5	19
30	mCherry fusions enable the subcellular localization of periplasmic and cytoplasmic proteins in Xanthomonas sp PLoS ONE, 2020, 15, e0236185.	1.1	4
31	The immunity of Meiwa kumquat against Xanthomonas citri is associated with a known susceptibility gene induced by a transcription activator-like effector. PLoS Pathogens, 2020, 16, e1008886.	2.1	22
32	Special issue on bacterial citrus diseases: part II. Tropical Plant Pathology, 2020, 45, 557-558.	0.8	0
33	Potential Mechanisms of AtNPR1 Mediated Resistance against Huanglongbing (HLB) in Citrus. International Journal of Molecular Sciences, 2020, 21, 2009.	1.8	28
34	Generation of homozygous cankerâ€resistant citrus in the TO generation using CRISPRâ€&pCas9p. Plant Biotechnology Journal, 2020, 18, 1990-1992.	4.1	62
35	Candidatus Liberibacter asiaticus: virulence traits and control strategies. Tropical Plant Pathology, 2020, 45, 285-297.	0.8	13
36	Genomeâ€wide analyses of <i>Liberibacter</i> species provides insights into evolution, phylogenetic relationships, and virulence factors. Molecular Plant Pathology, 2020, 21, 716-731.	2.0	62

#	Article	IF	CITATIONS
37	Citrus biotechnology. , 2020, , 171-192.		5
38	A plant genetic network for preventing dysbiosis in the phyllosphere. Nature, 2020, 580, 653-657.	13.7	304
39	Mechanisms Underlying the Rhizosphere-To-Rhizoplane Enrichment of Cellvibrio Unveiled by Genome-Centric Metagenomics and Metatranscriptomics. Microorganisms, 2020, 8, 583.	1.6	14
40	A perspective of citrus Huanglongbing in the context of the Mediterranean Basin. Journal of Plant Pathology, 2020, 102, 635-640.	0.6	19
41	Biotechnological Approaches for the Resistance to Citrus Diseases. Compendium of Plant Genomes, 2020, , 245-257.	0.3	7
42	Where are we going with genomics in plant pathogenic bacteria?. Genomics, 2019, 111, 729-736.	1.3	20
43	The in Planta Effective Concentration of Oxytetracycline Against â€~ <i>Candidatus</i> Liberibacter asiaticus' for Suppression of Citrus Huanglongbing. Phytopathology, 2019, 109, 2046-2054.	1.1	47
44	Deficiency of valencene in mandarin hybrids is associated with a deletion in the promoter region of the valencene synthase gene. BMC Plant Biology, 2019, 19, 101.	1.6	7
45	Stringent response regulators (p)ppGpp and DksA positively regulate virulence and host adaptation of <i>Xanthomonas citri</i> . Molecular Plant Pathology, 2019, 20, 1550-1565.	2.0	24
46	Diffusible signal factor (DSF)-mediated quorum sensing modulates expression of diverse traits in Xanthomonas citri and responses of citrus plants to promote disease. BMC Genomics, 2019, 20, 55.	1.2	35
47	Origin and diversification of Xanthomonas citri subsp. citri pathotypes revealed by inclusive phylogenomic, dating, and biogeographic analyses. BMC Genomics, 2019, 20, 700.	1.2	33
48	Implications of Heat Treatment and Systemic Delivery of Foliar-Applied Oxytetracycline on Citrus Physiological Management and Therapy Delivery. Frontiers in Plant Science, 2019, 10, 41.	1.7	11
49	Targeted Early Detection of Citrus Huanglongbing Causal Agent â€~ <i>Candidatus</i> Liberibacter asiaticus' Before Symptom Expression. Phytopathology, 2019, 109, 952-959.	1.1	26
50	The Citrus Huanglongbing Crisis and Potential Solutions. Molecular Plant, 2019, 12, 607-609.	3.9	93
51	<scp>CRISPR</scp> â€LbCas12aâ€mediated modification of citrus. Plant Biotechnology Journal, 2019, 17, 1928-1937.	4.1	134
52	TfmR, a novel TetRâ€family transcriptional regulator, modulates the virulence of Xanthomonas citri in response to fatty acids. Molecular Plant Pathology, 2019, 20, 701-715.	2.0	18
53	The Tad Pilus Apparatus of â€~ <i>Candidatus</i> Liberibacter asiaticus' and Its Regulation by VisNR. Molecular Plant-Microbe Interactions, 2019, 32, 1175-1187.	1.4	29
54	Developing Citrus Huanglongbing (HLB) Management Strategies Based on the Severity of Symptoms in HLB-Endemic Citrus-Producing Regions. Phytopathology, 2019, 109, 582-592.	1.1	43

#	Article	IF	CITATIONS
55	Genome Editing in Citrus Tree with CRISPR/Cas9. Methods in Molecular Biology, 2019, 1917, 235-241.	0.4	22
56	Functional characterization of the citrus canker susceptibility gene <i>CsLOB1</i> . Molecular Plant Pathology, 2018, 19, 1908-1916.	2.0	44
57	Induced Systemic Resistance Against Citrus Canker Disease by Rhizobacteria. Phytopathology, 2018, 108, 1038-1045.	1.1	32
58	A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host. MBio, 2018, 9, .	1.8	37
59	An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nature Communications, 2018, 9, 1718.	5.8	142
60	Recent advances in the understanding of <i>Xanthomonas citri</i> ssp. <i>citri</i> pathogenesis and citrus canker disease management. Molecular Plant Pathology, 2018, 19, 1302-1318.	2.0	111
61	Metabolic Mechanisms of Host Species Against Citrus Huanglongbing (Greening Disease). Critical Reviews in Plant Sciences, 2018, 37, 496-511.	2.7	29
62	The structure and function of the global citrus rhizosphere microbiome. Nature Communications, 2018, 9, 4894.	5.8	304
63	Antibiotic Resistance in Plant-Pathogenic Bacteria. Annual Review of Phytopathology, 2018, 56, 161-180.	3.5	211
64	Pacbio sequencing of copper-tolerant Xanthomonas citri reveals presence of a chimeric plasmid structure and provides insights into reassortment and shuffling of transcription activator-like effectors among X. citri strains. BMC Genomics, 2018, 19, 16.	1.2	46
65	Molecular characterization of XopAG effector AvrGf2 from <i>Xanthomonas fuscans</i> ssp. <i>aurantifolii</i> in grapefruit. Molecular Plant Pathology, 2017, 18, 405-419.	2.0	12
66	Homologues of <i>CsLOB1</i> in citrus function as disease susceptibility genes in citrus canker. Molecular Plant Pathology, 2017, 18, 798-810.	2.0	38
67	Deciphering the regulon of a GntR family regulator via transcriptome and ChIPâ€exo analyses and its contribution to virulence in <i>Xanthomonas citri</i> . Molecular Plant Pathology, 2017, 18, 249-262.	2.0	32
68	Tale of the Huanglongbing Disease Pyramid in the Context of the Citrus Microbiome. Phytopathology, 2017, 107, 380-387.	1.1	79
69	â€~ <i>Candidatus</i> Liberibacter asiaticus' Encodes a Functional Salicylic Acid (SA) Hydroxylase That Degrades SA to Suppress Plant Defenses. Molecular Plant-Microbe Interactions, 2017, 30, 620-630.	1.4	108
70	The <i>Candidatus</i> Liberibacter–Host Interface: Insights into Pathogenesis Mechanisms and Disease Control. Annual Review of Phytopathology, 2017, 55, 451-482.	3.5	246
71	Genome editing of the disease susceptibility gene <i>Cs<scp>LOB</scp>1</i> in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 2017, 15, 817-823.	4.1	371
72	Taxonomic structure and functional association of foxtail millet root microbiome. GigaScience, 2017, 6, 1-12.	3.3	1,228

#	Article	IF	CITATIONS
73	Editing Citrus Genome via SaCas9/sgRNA System. Frontiers in Plant Science, 2017, 8, 2135.	1.7	87
74	A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing. Frontiers in Microbiology, 2017, 8, 2041.	1.5	40
75	Characterization of Antimicrobial-Producing Beneficial Bacteria Isolated from Huanglongbing Escape Citrus Trees. Frontiers in Microbiology, 2017, 8, 2415.	1.5	48
76	Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome, 2017, 5, 97.	4.9	177
77	SEC-Translocon Dependent Extracytoplasmic Proteins of Candidatus Liberibacter asiaticus. Frontiers in Microbiology, 2016, 7, 1989.	1.5	72
78	Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. Phytopathology, 2016, 106, 37-46.	1.1	67
79	Temporal Transcription Profiling of Sweet Orange in Response to PthA4-Mediated Xanthomonas citri subsp. citri Infection. Phytopathology, 2016, 106, 442-451.	1.1	12
80	Biolistic transformation of Carrizo citrange (Citrus sinensis Osb.Â×ÂPoncirus trifoliata L. Raf.). Plant Cell Reports, 2016, 35, 1955-1962.	2.8	22
81	Perspectives on the Transition From Bacterial Phytopathogen Genomics Studies to Applications Enhancing Disease Management: From Promise to Practice. Phytopathology, 2016, 106, 1071-1082.	1.1	12
82	Evaluation of the Spatiotemporal Dynamics of Oxytetracycline and Its Control Effect Against Citrus Huanglongbing via Trunk Injection. Phytopathology, 2016, 106, 1495-1503.	1.1	66
83	Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome. BMC Genomics, 2016, 17, 485.	1.2	15
84	The ATP-dependent RNA helicase HrpB plays an important role in motility and biofilm formation in Xanthomonas citri subsp. citri. BMC Microbiology, 2016, 16, 55.	1.3	36
85	Modification of the PthA4 effector binding elements in Type I Cs <scp>LOB</scp> 1 promoter using Cas9/sg <scp>RNA</scp> to produce transgenic Duncan grapefruit alleviating Xccî"pthA4:dCs <scp>LOB</scp> 1.3 infection. Plant Biotechnology Journal, 2016, 14, 1291-1301.	4.1	236
86	Development of a Microemulsion Formulation for Antimicrobial SecA Inhibitors. PLoS ONE, 2016, 11, e0150433.	1.1	22
87	Comparative genomics of <i>Pseudomonas syringae</i> pv. <i>syringae</i> strains B301D and <scp>HS</scp> 191 and insights into intrapathovar traits associated with plant pathogenesis. MicrobiologyOpen, 2015, 4, 553-573.	1.2	35
88	Positive selection is the main driving force for evolution of citrus canker-causing <i>Xanthomonas</i> . ISME Journal, 2015, 9, 2128-2138.	4.4	35
89	A Novel Periplasmic Protein, VrpA, Contributes to Efficient Protein Secretion by the Type III Secretion System in <i>Xanthomonas</i> spp Molecular Plant-Microbe Interactions, 2015, 28, 143-153.	1.4	31
90	The Post-transcriptional Regulator rsmA/csrA Activates T3SS by Stabilizing the 5′ UTR of hrpG, the Master Regulator of hrp/hrc Genes, in Xanthomonas. PLoS Pathogens, 2014, 10, e1003945.	2.1	66

Nian Wang

#	Article	IF	CITATIONS
91	Foliar Application of Biofilm Formation–Inhibiting Compounds Enhances Control of Citrus Canker Caused by Xanthomonas citri subsp. citri. Phytopathology, 2014, 104, 134-142.	1.1	69
92	Host immune responses accelerate pathogen evolution. ISME Journal, 2014, 8, 727-731.	4.4	22
93	Repertoire of novel sequence signatures for the detection of Candidatus Liberibacter asiaticus by quantitative real-time PCR. BMC Microbiology, 2014, 14, 39.	1.3	16
94	Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Reports, 2014, 33, 1993-2001.	2.8	67
95	<i>Lateral organ boundaries 1</i> is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E521-9.	3.3	268
96	Genomics of Xanthomonas citri and Related Species. , 2014, , 151-176.		3
97	Targeted Genome Editing of Sweet Orange Using Cas9/sgRNA. PLoS ONE, 2014, 9, e93806.	1.1	382
98	Over-expression of the citrus gene CtNH1 confers resistance to bacterial canker disease. Physiological and Molecular Plant Pathology, 2013, 84, 115-122.	1.3	24
99	Complete Genome Sequence of <i>Xanthomonas citri</i> subsp. <i>citri</i> Strain A ^w 12879, a Restricted-Host-Range Citrus Canker-Causing Bacterium. Genome Announcements, 2013, 1, .	0.8	32
100	Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics, 2013, 14, 551.	1.2	88
101	Global gene expression changes in <i><scp>C</scp>andidatus</i> â€ <scp>L</scp> iberibacter asiaticus during the transmission in distinct hosts between plant and insect. Molecular Plant Pathology, 2013, 14, 391-404.	2.0	94
102	Citrus Huanglongbing: A Newly Relevant Disease Presents Unprecedented Challenges. Phytopathology, 2013, 103, 652-665.	1.1	290
103	Transcriptional and Microscopic Analyses of Citrus Stem and Root Responses to Candidatus Liberibacter asiaticus Infection. PLoS ONE, 2013, 8, e73742.	1.1	116
104	Diffusible Signal Factor-Mediated Quorum Sensing Plays a Central Role in Coordinating Gene Expression of <i>Xanthomonas citri</i> subsp. <i>citri</i> . Molecular Plant-Microbe Interactions, 2012, 25, 165-179.	1.4	60
105	High-Throughput Screening and Analysis of Genes of <i>Xanthomonas citri</i> subsp. <i>citri</i> Involved in Citrus Canker Symptom Development. Molecular Plant-Microbe Interactions, 2012, 25, 69-84.	1.4	87
106	Identification of small molecule inhibitors against SecA of Candidatus Liberibacter asiaticus by structure based design. European Journal of Medicinal Chemistry, 2012, 54, 919-924.	2.6	21
107	RNA-seq and microarray complement each other in transcriptome profiling. BMC Genomics, 2012, 13, 629.	1.2	131
108	The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri. BMC Microbiology, 2012, 12, 31.	1.3	67

#	Article	IF	CITATIONS
109	Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME Journal, 2012, 6, 363-383.	4.4	162
110	RpfF-Dependent Regulon of <i>Xylella fastidiosa</i> . Phytopathology, 2012, 102, 1045-1053.	1.1	38
111	The novel virulenceâ€related gene <i>nlxA</i> in the lipopolysaccharide cluster of <i>Xanthomonas citri</i> ssp. <i>citri</i> is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance. Molecular Plant Pathology, 2012, 13, 923-934.	2.0	34
112	HrpG and HrpX Play Global Roles in Coordinating Different Virulence Traits of <i>Xanthomonas axonopodis</i> pv. <i>citri</i> . Molecular Plant-Microbe Interactions, 2011, 24, 649-661.	1.4	104
113	The <i>wxacO</i> gene of <i>Xanthomonas citri</i> ssp. <i>citri</i> encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Molecular Plant Pathology, 2011, 12, 381-396.	2.0	76
114	Isolation and Characterization of Beneficial Bacteria Associated with Citrus Roots in Florida. Microbial Ecology, 2011, 62, 324-336.	1.4	122
115	Discovery of novel SecA inhibitors of Candidatus Liberibacter asiaticus by structure based design. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4183-4188.	1.0	34
116	The ColR/ColS Two-Component System Plays Multiple Roles in the Pathogenicity of the Citrus Canker Pathogen <i>Xanthomonas citri</i> subsp. <i>citri</i> . Journal of Bacteriology, 2011, 193, 1590-1599.	1.0	61
117	Comparative Genomic Analysis of Xanthomonas axonopodis pv. citrumelo F1, Which Causes Citrus Bacterial Spot Disease, and Related Strains Provides Insights into Virulence and Host Specificit. Journal of Bacteriology, 2011, 193, 6342-6357.	1.0	82
118	Genome-Wide Mutagenesis of Xanthomonas axonopodis pv. citri Reveals Novel Genetic Determinants and Regulation Mechanisms of Biofilm Formation. PLoS ONE, 2011, 6, e21804.	1.1	76
119	Effect of pyriproxyfen, a juvenile hormone mimic, on egg hatch, nymph development, adult emergence and reproduction of the Asian citrus psyllid, <i>Diaphorina citri</i> Kuwayama. Pest Management Science, 2010, 66, 349-357.	1.7	63
120	Requirement of the <i>galU</i> Gene for Polysaccharide Production by and Pathogenicity and Growth <i>In Planta</i> of <i>Xanthomonas citri</i> subsp. <i>citri</i> . Applied and Environmental Microbiology, 2010, 76, 2234-2242.	1.4	72
121	Huanglongbing, a Systemic Disease, Restructures the Bacterial Community Associated with Citrus Roots. Applied and Environmental Microbiology, 2010, 76, 3427-3436.	1.4	101
122	Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC Research Notes, 2009, 2, 37.	0.6	42
123	Response of Sweet Orange (<i>Citrus sinensis</i>) to â€~ <i>Candidatus</i> Liberibacter asiaticus' Infection: Microscopy and Microarray Analyses. Phytopathology, 2009, 99, 50-57.	1.1	283
124	Bacterial Diversity Analysis of Huanglongbing Pathogen-Infected Citrus, Using PhyloChip Arrays and 16S rRNA Gene Clone Library Sequencing. Applied and Environmental Microbiology, 2009, 75, 1566-1574.	1.4	125
125	In Planta Distribution of â€~ <i>Candidatus</i> Liberibacter asiaticus' as Revealed by Polymerase Chain Reaction (PCR) and Real-Time PCR. Phytopathology, 2008, 98, 592-599.	1.1	228
126	The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal Molecules. Molecular Plant-Microbe Interactions, 2006, 19, 257-269.	1.4	28

#	Article	IF	CITATIONS
127	Characterization of the Transcriptional Activators SalA and SyrF, Which Are Required for Syringomycin and Syringopeptin Production by Pseudomonas syringae pv. syringae. Journal of Bacteriology, 2006, 188, 3290-3298.	1.0	40
128	Identification of the syr-syp Box in the Promoter Regions of Genes Dedicated to Syringomycin and Syringopeptin Production by Pseudomonas syringae pv. syringae B301D. Journal of Bacteriology, 2006, 188, 160-168.	1.0	30