List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1313295/publications.pdf Version: 2024-02-01

		16411	15218
211	17,696	64	126
papers	citations	h-index	g-index
232	232	232	21636
232	232	252	21050
all docs	docs citations	times ranked	citing authors
232 all docs	232 docs citations	232 times ranked	21636 citing authors

Ρμορλ Διι

#	Article	IF	CITATIONS
1	Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease. JAMA - Journal of the American Medical Association, 2010, 303, 1832.	3.8	1,064
2	The Preclinical Phase of Alzheimer Disease. Archives of Neurology, 2000, 57, 808.	4.9	650
3	The Lifetime Risk of Stroke. Stroke, 2006, 37, 345-350.	1.0	614
4	Plasma Phosphatidylcholine Docosahexaenoic Acid Content and Risk of Dementia and Alzheimer Disease. Archives of Neurology, 2006, 63, 1545.	4.9	603
5	Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiology of Aging, 2005, 26, 491-510.	1.5	588
6	Neuropsychological Criteria for Mild Cognitive Impairment Improves Diagnostic Precision, Biomarker Associations, and Progression Rates. Journal of Alzheimer's Disease, 2014, 42, 275-289.	1.2	493
7	Cumulative Head Impact Exposure Predicts Later-Life Depression, Apathy, Executive Dysfunction, and Cognitive Impairment in Former High School and College Football Players. Journal of Neurotrauma, 2017, 34, 328-340.	1.7	425
8	Association of MRI Markers of Vascular Brain Injury With Incident Stroke, Mild Cognitive Impairment, Dementia, and Mortality. Stroke, 2010, 41, 600-606.	1.0	418
9	Association of Plasma Leptin Levels With Incident Alzheimer Disease and MRI Measures of Brain Aging. JAMA - Journal of the American Medical Association, 2009, 302, 2565.	3.8	363
10	Association of White Matter Hyperintensity Volume With Decreased Cognitive Functioning. Archives of Neurology, 2006, 63, 246.	4.9	332
11	Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study. BMJ: British Medical Journal, 2012, 344, e1442-e1442.	2.4	324
12	Dementia After Stroke. Stroke, 2004, 35, 1264-1268.	1.0	309
13	Cerebral Microbleeds. Stroke, 2004, 35, 1831-1835.	1.0	287
14	Gender and incidence of dementia in the Framingham Heart Study from midâ€adult life. Alzheimer's and Dementia, 2015, 11, 310-320.	0.4	277
15	Prevalence and Correlates of Silent Cerebral Infarcts in the Framingham Offspring Study. Stroke, 2008, 39, 2929-2935.	1.0	274
16	Carotid Artery Atherosclerosis, MRI Indices of Brain Ischemia, Aging, and Cognitive Impairment. Stroke, 2009, 40, 1590-1596.	1.0	271
17	Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: a cross-sectional study. Lancet Neurology, The, 2012, 11, 1039-1047.	4.9	269
18	Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimer's Research and Therapy, 2014, 6, 68.	3.0	257

#	Article	IF	CITATIONS
19	Diabetes Mellitus and Risk of Developing Alzheimer Disease. Archives of Neurology, 2006, 63, 1551.	4.9	245
20	Framingham Stroke Risk Profile and Lowered Cognitive Performance. Stroke, 2004, 35, 404-409.	1.0	223
21	Relation of Obesity to Cognitive Function: Importance of Central Obesity and Synergistic Influence of Concomitant Hypertension. The Framingham Heart Study. Current Alzheimer Research, 2007, 4, 111-116.	0.7	222
22	Serum Brain-Derived Neurotrophic Factor and the Risk for Dementia. JAMA Neurology, 2014, 71, 55.	4.5	219
23	Development and validation of an interpretable deep learning framework for Alzheimer's disease classification. Brain, 2020, 143, 1920-1933.	3.7	219
24	Cardiac Index Is Associated With Brain Aging. Circulation, 2010, 122, 690-697.	1.6	215
25	Relations of arterial stiffness and endothelial function to brain aging in the community. Neurology, 2013, 81, 984-991.	1.5	213
26	Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nature Genetics, 2012, 44, 545-551.	9.4	212
27	Genomeâ€wide association studies of cerebral white matter lesion burden. Annals of Neurology, 2011, 69, 928-939.	2.8	201
28	Long-Term Exposure to Fine Particulate Matter, Residential Proximity to Major Roads and Measures of Brain Structure. Stroke, 2015, 46, 1161-1166.	1.0	198
29	Susceptibility of the conventional criteria for mild cognitive impairment to falseâ€positive diagnostic errors. Alzheimer's and Dementia, 2015, 11, 415-424.	0.4	194
30	Visceral fat is associated with lower brain volume in healthy middleâ€aged adults. Annals of Neurology, 2010, 68, 136-144.	2.8	189
31	Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham study. BMC Medical Genetics, 2007, 8, S15.	2.1	179
32	Thyroid Function and the Risk of Alzheimer Disease <subtitle>The Framingham Study</subtitle> . Archives of Internal Medicine, 2008, 168, 1514.	4.3	177
33	Biomarkers for Insulin Resistance and Inflammation and the Risk for All-Cause Dementia and Alzheimer Disease. Archives of Neurology, 2012, 69, 594.	4.9	170
34	Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology, 2014, 82, 1613-1619.	1.5	164
35	Visual Association Pathology in Preclinical Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2006, 65, 621-630.	0.9	153
36	Amyloid-Associated Depression. Archives of General Psychiatry, 2008, 65, 542.	13.8	151

#	Article	IF	CITATIONS
37	<i>APOE</i> genotype and MRI markers of cerebrovascular disease. Neurology, 2013, 81, 292-300.	1.5	149
38	Association of Plasma Total Homocysteine Levels With Subclinical Brain Injury. Archives of Neurology, 2008, 65, 642-9.	4.9	146
39	Association of Chronic Low-grade Inflammation With Risk of Alzheimer Disease in <i>ApoE4</i> Carriers. JAMA Network Open, 2018, 1, e183597.	2.8	145
40	Low Cardiac Index Is Associated With Incident Dementia and Alzheimer Disease. Circulation, 2015, 131, 1333-1339.	1.6	140
41	Duration of American Football Play and Chronic Traumatic Encephalopathy. Annals of Neurology, 2020, 87, 116-131.	2.8	136
42	Are Empirically-Derived Subtypes of Mild Cognitive Impairment Consistent with Conventional Subtypes?. Journal of the International Neuropsychological Society, 2013, 19, 635-645.	1.2	133
43	Serum Brain–Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Levels Are Associated With Risk of Stroke and Vascular Brain Injury. Stroke, 2013, 44, 2768-2775.	1.0	131
44	Association of Alcohol Consumption With Brain Volume in the Framingham Study. Archives of Neurology, 2008, 65, 1363-7.	4.9	129
45	Common variants at 6q22 and 17q21 are associated with intracranial volume. Nature Genetics, 2012, 44, 539-544.	9.4	126
46	Homocysteine and Cognitive Performance in the Framingham Offspring Study: Age Is Important. American Journal of Epidemiology, 2005, 162, 644-653.	1.6	123
47	Relation of Left Ventricular Ejection Fraction to Cognitive Aging (from the Framingham Heart Study). American Journal of Cardiology, 2011, 108, 1346-1351.	0.7	120
48	Association of Metabolic Dysregulation With Volumetric Brain Magnetic Resonance Imaging and Cognitive Markers of Subclinical Brain Aging in Middle-Aged Adults. Diabetes Care, 2011, 34, 1766-1770.	4.3	117
49	Glucose indices are associated with cognitive and structural brain measures in young adults. Neurology, 2015, 84, 2329-2337.	1.5	115
50	The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. American Journal of Clinical Nutrition, 2011, 94, 1584-1591.	2.2	114
51	Learning classification models of cognitive conditions from subtle behaviors in the digital Clock Drawing Test. Machine Learning, 2016, 102, 393-441.	3.4	111
52	New Norms for a New Generation: Cognitive Performance in the Framingham Offspring Cohort. Experimental Aging Research, 2004, 30, 333-358.	0.6	108
53	Plasma amyloidâ€Î² and risk of Alzheimer's disease in the Framingham Heart Study. Alzheimer's and Dementia, 2015, 11, 249.	0.4	101
54	Neuropsychological Criteria for Mild Cognitive Impairment and Dementia Risk in the Framingham Heart Study. Journal of the International Neuropsychological Society, 2016, 22, 937-943.	1.2	98

#	Article	IF	CITATIONS
55	APOE Genotype Modifies the Relationship between Midlife Vascular Risk Factors and Later Cognitive Decline. Journal of Stroke and Cerebrovascular Diseases, 2013, 22, 1361-1369.	0.7	95
56	Deep ensemble learning for Alzheimer's disease classification. Journal of Biomedical Informatics, 2020, 105, 103411.	2.5	95
57	Bone Mineral Density and the Risk of Alzheimer Disease. Archives of Neurology, 2005, 62, 107.	4.9	88
58	Naming ability across the adult life span. Aging, Neuropsychology, and Cognition, 1995, 2, 300-311.	0.7	87
59	Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort. American Journal of Clinical Nutrition, 2020, 112, 343-353.	2.2	87
60	Genome-Wide Association Studies of MRI-Defined Brain Infarcts. Stroke, 2010, 41, 210-217.	1.0	82
61	Speech monitoring skills in Alzheimer's disease, Parkinson's disease, and normal aging. Brain and Language, 1992, 42, 38-51.	0.8	80
62	Amyloid Burden in Obstructive SleepÂApnea. Journal of Alzheimer's Disease, 2017, 59, 21-29.	1.2	79
63	Association of Plasma ADMA Levels With MRI Markers of Vascular Brain Injury. Stroke, 2009, 40, 2959-2964.	1.0	77
64	Atrial Fibrillation Is Associated With Lower Cognitive Performance in the Framingham Offspring Men. Journal of Stroke and Cerebrovascular Diseases, 2006, 15, 214-222.	0.7	74
65	Genome-Wide Scan for White Matter Hyperintensity. Stroke, 2006, 37, 77-81.	1.0	67
66	Spectrum of cognition short of dementia. Neurology, 2015, 85, 1712-1721.	1.5	67
67	Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Biological Psychiatry, 2015, 77, 749-763.	0.7	67
68	Association of White Matter Rarefaction, Arteriolosclerosis, and Tau With Dementia in Chronic Traumatic Encephalopathy. JAMA Neurology, 2019, 76, 1298.	4.5	67
69	Operationalizing diagnostic criteria for Alzheimer's disease and other ageâ€related cognitive impairment—Part 2. Alzheimer's and Dementia, 2011, 7, 35-52.	0.4	66
70	Multimodal deep learning for Alzheimer's disease dementia assessment. Nature Communications, 2022, 13, .	5.8	65
71	2014 Report on the Milestones for the US National Plan to Address Alzheimer's Disease. , 2014, 10, S430-S452.		64
72	Multiple Biomarkers and Risk of Clinical and Subclinical Vascular Brain Injury. Circulation, 2012, 125, 2100-2107.	1.6	63

#	Article	IF	CITATIONS
73	Left Ventricular Mass, Blood Pressure, and Lowered Cognitive Performance in the Framingham Offspring. Hypertension, 2007, 49, 439-445.	1.3	62
74	Atrial fibrillation and cognitive decline in the Framingham Heart Study. Heart Rhythm, 2018, 15, 166-172.	0.3	60
75	White matter signal abnormalities in former National Football League players. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 56-65.	1.2	57
76	On the Nature of Naming Errors in Aging and Dementia: A Study of Semantic Relatedness. Brain and Language, 1996, 54, 184-195.	0.8	56
77	CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer's disease. PLoS ONE, 2017, 12, e0185541.	1.1	56
78	Baseline White Matter Hyperintensities and Hippocampal Volume are Associated With Conversion From Normal Cognition to Mild Cognitive Impairment in the Framingham Offspring Study. Alzheimer Disease and Associated Disorders, 2018, 32, 50-56.	0.6	56
79	The Framingham Brain Donation Program: Neuropathology Along the Cognitive Continuum. Current Alzheimer Research, 2012, 9, 673-686.	0.7	55
80	A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. Journal of Alzheimer's Disease, 2018, 63, 1347-1360.	1.2	55
81	Associations of loneliness with risk of Alzheimer's disease dementia in the Framingham Heart Study. Alzheimer's and Dementia, 2021, 17, 1619-1627.	0.4	55
82	Word-list intrusion errors predict progression to mild cognitive impairment Neuropsychology, 2018, 32, 235-245.	1.0	53
83	Failure to detect an association between selfâ€reported traumatic brain injury and Alzheimer's disease neuropathology and dementia. Alzheimer's and Dementia, 2019, 15, 686-698.	0.4	52
84	Practical risk score for 5â€; 10â€; and 20â€year prediction of dementia inÂelderly persons: Framingham Heart Study. Alzheimer's and Dementia, 2018, 14, 35-42.	0.4	50
85	Fusion of deep learning models of MRI scans, Mini–Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 737-749.	1.2	50
86	Verb Naming in Normal Aging. Applied Neuropsychology, 1999, 6, 57-67.	1.5	45
87	Managing and analysing data from a large-scale study on Framingham Offspring relating brain structure to cognitive function. Statistics in Medicine, 2004, 23, 351-367.	0.8	45
88	Barriers to medication adherence and links to cardiovascular disease risk factor control: the Framingham Heart Study. Internal Medicine Journal, 2018, 48, 414-421.	0.5	45
89	Brain Imaging and Cognitive Predictors of Stroke and Alzheimer Disease in the Framingham Heart Study. Stroke, 2013, 44, 2787-2794.	1.0	44
90	How technology is reshaping cognitive assessment: Lessons from the Framingham Heart Study Neuropsychology, 2017, 31, 846-861.	1.0	42

#	Article	IF	CITATIONS
91	Lipoprotein Phospholipase A2 and Cerebral Microbleeds in the Framingham Heart Study. Stroke, 2012, 43, 3091-3094.	1.0	41
92	Cognitive Performance after Stroke – The Framingham Heart Study. International Journal of Stroke, 2014, 9, 48-54.	2.9	41
93	Machine learning models to predict onset of dementia: A label learning approach. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 918-925.	1.8	41
94	Neuropsychological Syndromes Associated with Alzheimer's/Vascular Dementia: A Latent Class Analysis. Journal of Alzheimer's Disease, 2014, 42, 999-1014.	1.2	40
95	Associations between brain inflammatory profiles and human neuropathology are altered based on apolipoprotein E ε4 genotype. Scientific Reports, 2020, 10, 2924.	1.6	40
96	Midlife Cardiovascular Risk Impacts Executive Function. Alzheimer Disease and Associated Disorders, 2014, 28, 16-22.	0.6	38
97	Age and Graphomotor Decision Making Assessed with the Digital Clock Drawing Test: The Framingham Heart Study. Journal of Alzheimer's Disease, 2017, 60, 1611-1620.	1.2	38
98	A longitudinal examination of plasma neurofilament light and total tau for the clinical detection and monitoring of Alzheimer's disease. Neurobiology of Aging, 2020, 94, 60-70.	1.5	35
99	Interactive Effects of Apolipoprotein E Type 4 Genotype and Cerebrovascular Risk on Neuropsychological Performance and Structural Brain Changes. Journal of Stroke and Cerebrovascular Diseases, 2010, 19, 261-268.	0.7	34
100	Daytime sleepiness associated with poor sustained attention in middle and late adulthood. Sleep Medicine, 2015, 16, 143-151.	0.8	34
101	Enhancing magnetic resonance imaging-driven Alzheimer's disease classification performance using generative adversarial learning. Alzheimer's Research and Therapy, 2021, 13, 60.	3.0	34
102	Back to the future: Alzheimer's disease heterogeneity revisited. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2015, 1, 368-370.	1.2	33
103	Pulse Pressure Is Associated With Early Brain Atrophy and Cognitive Decline. Alzheimer Disease and Associated Disorders, 2016, 30, 210-215.	0.6	32
104	The relation of aphasia to dementia. Aphasiology, 1988, 2, 161-173.	1.4	31
105	Mid- to Late-Life Body Mass Index and Dementia Risk: 38 Years of Follow-up of the Framingham Study. American Journal of Epidemiology, 2021, 190, 2503-2510.	1.6	31
106	Association of matrix metalloproteinases with MRI indices of brain ischemia and aging. Neurobiology of Aging, 2010, 31, 2128-2135.	1.5	30
107	Inflammatory Markers and Neuropsychological Functioning: The Framingham Heart Study. Neuroepidemiology, 2011, 37, 21-30.	1.1	30
108	Apolipoprotein Epsilon 4 Allele Modifies Waist-to-Hip Ratio Effects on Cognition and Brain Structure. Journal of Stroke and Cerebrovascular Diseases, 2013, 22, 119-125.	0.7	30

#	Article	IF	CITATIONS
109	Association between atrial fibrillation and volumetric magnetic resonance imaging brain measures: Framingham Offspring Study. Heart Rhythm, 2016, 13, 2020-2024.	0.3	30
110	Lexical retrieval in discourse: An early indicator of Alzheimer's dementia. Clinical Linguistics and Phonetics, 2013, 27, 905-921.	0.5	29
111	Amyloidâ€associated depression and ApoE4 allele: longitudinal followâ€up for the development of Alzheimer's disease. International Journal of Geriatric Psychiatry, 2016, 31, 316-322.	1.3	29
112	Bivariate Heritability of Total and Regional Brain Volumes. Alzheimer Disease and Associated Disorders, 2009, 23, 218-223.	0.6	27
113	Visuoconstructional Impairment in Subtypes of Mild Cognitive Impairment. Applied Neuropsychology Adult, 2016, 23, 43-52.	0.7	27
114	Integrative brain transcriptome analysis links complement component 4 and HSPA2 to the APOE ε2 protective effect in Alzheimer disease. Molecular Psychiatry, 2021, 26, 6054-6064.	4.1	27
115	Association Between Neuropathology and Brain Volume in The Framingham Heart Study. Alzheimer Disease and Associated Disorders, 2014, 28, 219-225.	0.6	25
116	Positive Association between Plasma Amylin and Cognition in a Homebound Elderly Population. Journal of Alzheimer's Disease, 2014, 42, 555-563.	1.2	25
117	Assessment of the Mid-Life Demographic and Lifestyle Risk Factors of Dementia Using Data from the Framingham Heart Study Offspring Cohort. Journal of Alzheimer's Disease, 2018, 63, 1119-1127.	1.2	25
118	Interaction Between Midlife Blood Glucose and APOE Genotype Predicts Later Alzheimer's Disease Pathology. Journal of Alzheimer's Disease, 2016, 53, 1553-1562.	1.2	23
119	Midlife lipid and glucose levels are associated with Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 181-193.	0.4	23
120	Risk Estimations, Risk Factors, and Genetic Variants Associated with Alzheimer's Disease in Selected Publications from the Framingham Heart Study. Journal of Alzheimer's Disease, 2012, 33, S439-S445.	1.2	22
121	The Framingham Heart Study Clock Drawing Performance: Normative Data from the Offspring Cohort. Experimental Aging Research, 2013, 39, 80-108.	0.6	22
122	Population Normative Data for the CERAD Word List and Victoria Stroop Test in Younger- and Middle-Aged Adults: Cross-Sectional Analyses from the Framingham Heart Study. Experimental Aging Research, 2016, 42, 315-328.	0.6	22
123	Assessing Working Memory in Mild Cognitive Impairment with Serial Order Recall. Journal of Alzheimer's Disease, 2018, 61, 917-928.	1.2	22
124	Structural MRI profiles and tau correlates of atrophy in autopsy-confirmed CTE. Alzheimer's Research and Therapy, 2021, 13, 193.	3.0	22
125	White Matter Hyperintensity and Cognitive Functioning in the Racial and Ethnic Minority Cohort of the Framingham Heart Study. Neuroepidemiology, 2010, 35, 117-122.	1.1	21
126	Effects of white matter integrity and brain volumes on late life depression in the Framingham Heart Study. International Journal of Geriatric Psychiatry, 2017, 32, 214-221.	1.3	21

#	Article	IF	CITATIONS
127	Spoken language biomarkers for detecting cognitive impairment. , 2017, , .		21
128	Normative Data for the Cognitively Intact Oldest-Old: The Framingham Heart Study. Experimental Aging Research, 2015, 41, 386-409.	0.6	20
129	Association of Plasma Amylin Concentration With Alzheimer Disease and Brain Structure in Older Adults. JAMA Network Open, 2019, 2, e199826.	2.8	20
130	Mid-life Cardiovascular Risk Impacts Memory Function. Alzheimer Disease and Associated Disorders, 2015, 29, 117-123.	0.6	20
131	APOE and mild cognitive impairment: the Framingham Heart Study. Age and Ageing, 2015, 44, 307-311.	0.7	19
132	Long-term dietary flavonoid intake and change in cognitive function in the Framingham Offspring cohort. Public Health Nutrition, 2020, 23, 1576-1588.	1.1	19
133	Identification of digital voice biomarkers for cognitive health. Exploration of Medicine, 2020, 1, 406-417.	1.5	19
134	DCTclock: Clinically-Interpretable and Automated Artificial Intelligence Analysis of Drawing Behavior for Capturing Cognition. Frontiers in Digital Health, 2021, 3, 750661.	1.5	19
135	Parental longevity is associated with cognition and brain ageing in middle-aged offspring. Age and Ageing, 2014, 43, 358-363.	0.7	18
136	Metabolic Syndrome and Cognitive Trajectories in the Framingham Offspring Study. Journal of Alzheimer's Disease, 2019, 71, 931-943.	1.2	18
137	Severity Distribution of Alzheimer's Disease Dementia and Mild Cognitive Impairment in the Framingham Heart Study. Journal of Alzheimer's Disease, 2021, 79, 807-817.	1.2	18
138	Plasma pâ€ŧau ₁₈₁ shows stronger network association to Alzheimer's disease dementia than neurofilament light and total tau. Alzheimer's and Dementia, 2022, 18, 1523-1536.	0.4	18
139	Protein phosphatase 2A and complement component 4 are linked to the protective effect of <i>APOE</i> É>2 for Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 2042-2054.	0.4	18
140	Qualitative Neuropsychological Measures: Normative Data on Executive Functioning Tests from the Framingham Offspring Study. Experimental Aging Research, 2013, 39, 515-535.	0.6	17
141	Naming in Normal Aging and Dementia of the Alzheimer's Type. , 1997, , 166-188.		17
142	Assessing the Utility of Language and Voice Biomarkers to Predict Cognitive Impairment in the Framingham Heart Study Cognitive Aging Cohort Data. Journal of Alzheimer's Disease, 2020, 76, 905-922.	1.2	16
143	Association Between the Digital Clock Drawing Test and Neuropsychological Test Performance: Large Community-Based Prospective Cohort (Framingham Heart Study). Journal of Medical Internet Research, 2021, 23, e27407.	2.1	16
144	Automated detection of mild cognitive impairment and dementia from voice recordings: A natural language processing approach. Alzheimer's and Dementia, 2023, 19, 946-955.	0.4	16

#	Article	IF	CITATIONS
145	Profiles by Sex of Brain MRI and Cognitive Function in the Framingham Offspring Study. Alzheimer Disease and Associated Disorders, 2010, 24, 190-193.	0.6	15
146	Association of Mild Obstructive Sleep Apnea With Cognitive Performance, Excessive Daytime Sleepiness, and Quality of Life in the General Population: The Korean Genome and Epidemiology Study (KoGES). Sleep, 2017, 40, .	0.6	15
147	Ante-mortem plasma phosphorylated tau (181) predicts Alzheimer's disease neuropathology and regional tau at autopsy. Brain, 2022, 145, 3546-3557.	3.7	15
148	Defining MCI in the Framingham Heart Study Offspring. Alzheimer Disease and Associated Disorders, 2013, 27, 330-336.	0.6	13
149	School start time changes and sleep patterns in elementary school students. Sleep Health, 2015, 1, 109-114.	1.3	13
150	THink: Inferring Cognitive Status from Subtle Behaviors. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 2014, 2898-2905.	3.6	13
151	Using data science to diagnose and characterize heterogeneity of Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 264-271.	1.8	12
152	Associations Between Midlife (but Not Late-Life) Elevated Coronary Heart Disease Risk and Lower Cognitive Performance: Results From the Framingham Offspring Study. American Journal of Epidemiology, 2019, 188, 2175-2187.	1.6	12
153	Flavonoid Intake and MRI Markers of Brain Health in the Framingham Offspring Cohort. Journal of Nutrition, 2020, 150, 1545-1553.	1.3	12
154	Association Between Elevated Depressive Symptoms and Cognitive Function Moderated by APOE4 Status: Framingham Offspring Study. Journal of Alzheimer's Disease, 2021, 80, 1269-1279.	1.2	11
155	Midlife Hypertension Risk and Cognition inÂthe Non-Demented Oldest Old: Framingham Heart Study. Journal of Alzheimer's Disease, 2015, 47, 197-204.	1.2	10
156	Digital Neuropsychological Assessment: New Technology for Measuring Subtle Neuropsychological Behavior. Journal of Alzheimer's Disease, 2021, 82, 1-4.	1.2	10
157	Trajectories of Cognitive Decline in Brain Donors With Autopsy-Confirmed Alzheimer Disease and Cerebrovascular Disease. Neurology, 2022, 98, .	1.5	10
158	Aging Well: Using Precision to Drive Down Costs and Increase Health Quality. , 2019, 1, .		9
159	Visual and Verbal Serial List Learning in Patients with Statistically-Determined Mild Cognitive Impairment. Innovation in Aging, 2019, 3, igz009.	0.0	9
160	The Boston Process Approach and Digital Neuropsychological Assessment: Past Research and Future Directions. Journal of Alzheimer's Disease, 2022, 87, 1419-1432.	1.2	9
161	Visual versus Verbal Working Memory in Statistically Determined Patients with Mild Cognitive Impairment: On behalf of the Consortium for Clinical and Epidemiological Neuropsychological Data Analysis (CENDA). Journal of the International Neuropsychological Society, 2019, 25, 1001-1010.	1.2	8
162	Association Between Leptin, Cognition, and Structural Brain Measures Among "Early―Middle-Aged Adults: Results from the Framingham Heart Study Third Generation Cohort. Journal of Alzheimer's Disease, 2020, 77, 1279-1289.	1.2	8

#	Article	IF	CITATIONS
163	Redefining and Validating Digital Biomarkers as Fluid, Dynamic Multi-Dimensional Digital Signal Patterns. Frontiers in Digital Health, 2021, 3, 751629.	1.5	8
164	Digital sleep measures and white matter health in the Framingham Heart Study. Exploration of Medicine, 2021, 2, 253-267.	1.5	7
165	Normative References for Graphomotor and Latency Digital Clock Drawing Metrics for Adults Age 55 and Older: Operationalizing the Production of a Normal Appearing Clock. Journal of Alzheimer's Disease, 2021, 82, 59-70.	1.2	7
166	Digital Technology Differentiates Graphomotor and Information Processing Speed Patterns of Behavior. Journal of Alzheimer's Disease, 2021, 82, 17-32.	1.2	7
167	Potential longâ€ŧerm effect of tumor necrosis factor inhibitors on dementia risk: A propensity score matched retrospective cohort study in US veterans. Alzheimer's and Dementia, 2022, 18, 1248-1259.	0.4	7
168	Association of Parental Stroke With Brain Injury and Cognitive Measures in Offspring. Stroke, 2013, 44, 812-815.	1.0	6
169	Temporal association of neuropsychological test performance using unsupervised learning reveals a distinct signature of Alzheimer's disease status. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 964-973.	1.8	6
170	Using machine intelligence to uncover Alzheimer's disease progression heterogeneity. Exploration of Medicine, 2020, 1, .	1.5	6
171	Cognitive performance norms from the Korean genome and epidemiology study (KoGES). International Psychogeriatrics, 2017, 29, 1909-1924.	0.6	5
172	Exploring the Hierarchical Influence of Cognitive Functions for Alzheimer Disease: The Framingham Heart Study. Journal of Medical Internet Research, 2020, 22, e15376.	2.1	5
173	Verbal Memory and Brain Aging. American Journal of Alzheimer's Disease and Other Dementias, 2015, 30, 622-628.	0.9	4
174	Neck Circumference, Brain Imaging Measures, and Neuropsychological Testing Measures. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 1570-1581.	0.7	4
175	Pramlintide: The Effects of a Single Drug Injection on Blood Phosphatidylcholine Profile for Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 597-609.	1.2	4
176	Revised Framingham Stroke Risk Profile: Association with Cognitive Status and MRI-Derived Volumetric Measures. Journal of Alzheimer's Disease, 2020, 78, 1393-1408.	1.2	4
177	Carotid Intima-media Thickness and Midlife Cognitive Function: Impact of Race and Social Disparities in the Bogalusa Heart Study. Neurology, 2022, , 10.1212/WNL.0000000000000155.	1.5	4
178	[P3–431]: DEEP LEARNING APPLICATION IN IDENTIFYING PROTEOMIC RISK MARKERS FOR ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P1133.	0.4	3
179	Neuropsychological test validation of speech markers of cognitive impairment in the Framingham Cognitive Aging Cohort. Exploration of Medicine, 2021, 2, 232-252.	1.5	3
180	Advantages of Continuous-Valued Risk Scores for Predicting Long-Term Costs: The Framingham Coronary Heart Disease 10-Year Risk Score. , 2019, 1, .		3

#	Article	IF	CITATIONS
181	Associations Between the Digital Clock Drawing Test and Brain Volume: Large Community-Based Prospective Cohort (Framingham Heart Study). Journal of Medical Internet Research, 2022, 24, e34513.	2.1	3
182	Data Platform for the Research and Prevention of Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2017, 1028, 55-78.	0.8	2
183	Role-specific Language Models for Processing Recorded Neuropsychological Exams. , 2018, , .		2
184	THink: Inferring Cognitive Status from Subtle Behaviors. Proceedings of the Innovative Applications of Artificial Intelligence Conference, 2014, 2014, 2898-2905.	1.0	2
185	Relationship of Silent Cerebral Infarctions and White Matter Hyperintensities to Cognitive Performance in the Framingham Offspring Study. Alzheimer Disease and Associated Disorders, 2006, 20, S101.	0.6	1
186	O4-12-01: ACTUARIAL NEUROPSYCHOLOGICAL CRITERIA FOR MCI DIAGNOSIS IMPROVES ASSOCIATIONS WITH VASCULAR AND IMAGING BIOMARKERS. , 2014, 10, P275-P275.		1
187	P2-237: NEUROPSYCHOLOGICAL CRITERIA FOR MCI IMPROVES DIAGNOSTIC PRECISION, CSF BIOMARKER ASSOCIATIONS, AND PROGRESSION RATES. , 2014, 10, P562-P563.		1
188	P2-251: VISUOCONSTRUCTIONAL IMPAIRMENT IN SUBTYPES OF MILD COGNITIVE IMPAIRMENT. , 2014, 10, P568-P568.		1
189	P2â€267: NOVEL DIGITAL VOICE BIOMARKERS OF DEMENTIA FROM THE FRAMINGHAM STUDY. Alzheimer's and Dementia, 2018, 14, P778.	0.4	1
190	Relationship of Cancer to Brain Aging Markers of Alzheimer's Disease: The Framingham Heart Study. , 2019, 1, .		1
191	Heterogeneity in Alzheimer's Disease and Related Dementias. Advances in Geriatric Medicine and Research, 2019, 1, .	0.6	1
192	Correlation of a mobileâ€based cognitive test app with traditional neuropsychological tests in a communityâ€based cohort. Alzheimer's and Dementia, 2021, 17, .	0.4	1
193	Brain aging in the graying population: Not all the same color. Neurology, 2011, 77, 706-707.	1.5	0
194	O4-02-01: Plasma clusterin levels and risk of dementia and Alzheimer's disease: The Framingham Heart Study. , 2013, 9, P681-P681.		0
195	P1-315: INFLUENCE OF MIDLIFE ELEVATED BLOOD GLUCOSE AND APOE GENOTYPE ON VASCULAR AND ALZHEIMER'S DISEASE NEUROPATHOLOGY. , 2014, 10, P427-P427.		0
196	P1-327: NEUROPSYCHOLOGICAL CRITERIA FOR MCI AND DEMENTIA RISK IN THE FRAMINGHAM HEART STUDY. , 2014, 10, P432-P432.		0
197	P1-017: ELEMENTS OF METABOLIC SYNDROME IN AN URBAN SAMPLE WITH MILD COGNITIVE IMPAIRMENT. , 2014, 10, P310-P310.		0
198	P1-339: DETECTING PRE-MILD COGNITIVE IMPAIRMENT: COMBINING MRI AND MEMORY TEST PERFORMANCE. , 2014, 10, P436-P437.		0

#	Article	IF	CITATIONS
199	P3-297: CVD is Pathologically Associated with Greater Alzheimer's Disease in Non-Demented Older Adults. , 2016, 12, P954-P955.		0
200	TDâ€Pâ€003: Using the Digital Clock Drawing Test and Machine Learning to Improve Accuracy of Cognitive Screening. Alzheimer's and Dementia, 2016, 12, P153.	0.4	0
201	O4-12-03: Using the Digital Clock Drawing Test and Machine Learning to Improve Accuracy of Cognitive Screening. , 2016, 12, P363-P364.		0
202	P1â€193: Data Driven Approaches for Predictors Selections in Determining Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P478.	0.4	0
203	[P4–282]: DETECTING SUBTLE COGNITIVE IMPAIRMENT ASSOCIATED WITH GENETIC APOE ALZHEIMER's DISEASE RISK. Alzheimer's and Dementia, 2017, 13, P1393.	0.4	0
204	[P2–541]: METABOLIC SYNDROME AND COGNITIVE DECLINE IN THE FRAMINGHAM HEART STUDY. Alzheimer's and Dementia, 2017, 13, P850.	0.4	0
205	Sex and gender differences in neuropsychological symptoms for clinical diagnosis of Alzheimer's disease. , 2021, , 163-185.		0
206	Blood pressure trajectories from early life and their association with cognitive function changes in midlife. Alzheimer's and Dementia, 2021, 17, .	0.4	0
207	Remote diagnosis of dementia using AI methods on clock drawing images. Alzheimer's and Dementia, 2021, 17, .	0.4	0
208	Midlife measures of lipid fractions and fasting glucose are associated with lateâ€onset Alzheimer disease. Alzheimer's and Dementia, 2021, 17, .	0.4	0
209	Modifiable factors associated with cognitive resistance in the Framingham Heart Study. Alzheimer's and Dementia, 2021, 17, .	0.4	0
210	Plasma Pâ€ŧau ₁₈₁ and NfL are central nodes in a network of diagnostic, biomarker, and demographic data. Alzheimer's and Dementia, 2021, 17, .	0.4	0
211	Comparative analysis of cerebrospinal fluid markers and multimodal imaging in predicting Alzheimer's disease progression. Alzheimer's and Dementia, 2021, 17, .	0.4	0