Nicolas Mermod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1312745/publications.pdf

Version: 2024-02-01

		430874	377865
38	1,220 citations	18	34
papers	citations	h-index	g-index
39	39	39	1556
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Statistical significance of quantitative PCR. BMC Bioinformatics, 2007, 8, 131.	2.6	295
2	CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metabolic Engineering, 2014, 21, 91-102.	7.0	134
3	Use of the chicken lysozyme 5′ matrix attachment region to generate high producer CHO cell lines. Biotechnology and Bioengineering, 2005, 91, 1-11.	3.3	108
4	Transforming growth factor-?: The breaking open of a black box. BioEssays, 1997, 19, 581-591.	2.5	101
5	High-level transgene expression by homologous recombination-mediated gene transfer. Nucleic Acids Research, 2011, 39, e104-e104.	14.5	47
6	A regulatory network for the efficient control of transgene expression. Journal of Gene Medicine, 2000, 2, 107-116.	2.8	42
7	Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes. Nucleic Acids Research, 2014, 42, 193-204.	14.5	38
8	Identification of a potent MAR element from the mouse genome and assessment of its activity in stable and transient transfections. Journal of Biotechnology, 2011, 154, 11-20.	3.8	36
9	Molecular Characterization of a Human Matrix Attachment Region Epigenetic Regulator. PLoS ONE, 2013, 8, e79262.	2.5	34
10	MAR Elements and Transposons for Improved Transgene Integration and Expression. PLoS ONE, 2013, 8, e62784.	2.5	32
11	Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms. Nucleic Acids Research, 2016, 44, e56-e56.	14.5	30
12	Upregulation of vasopressin V1A receptor mRNA and protein in vascular smooth muscle cells following cyclosporin A treatment. British Journal of Pharmacology, 2001, 132, 909-917.	5.4	28
13	Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnology Journal, 2015, 10, 967-978.	3.5	28
14	Overexpression of transcription factor Foxal and target genes remediate therapeutic protein production bottlenecks in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2020, 117, 1101-1116.	3.3	28
15	Using Matrix Attachment Regions to Improve Recombinant Protein Production. Methods in Molecular Biology, 2012, 801, 93-110.	0.9	25
16	MARâ€Mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering. Biotechnology and Bioengineering, 2017, 114, 384-396.	3.3	23
17	Autologous Cell Therapy Approach for Duchenne Muscular Dystrophy using PiggyBac Transposons and Mesoangioblasts. Molecular Therapy, 2018, 26, 1093-1108.	8.2	23
18	A role for homologous recombination proteins in cell cycle regulation. Cell Cycle, 2015, 14, 2853-2861.	2.6	20

#	Article	IF	CITATIONS
19	Extracellular matrilin-2 deposition controls the myogenic program timing during muscle regeneration. Journal of Cell Science, 2014, 127, 3240-56.	2.0	19
20	A role for alternative end-joining factors in homologous recombination and genome editing in Chinese hamster ovary cells. DNA Repair, 2019, 82, 102691.	2.8	16
21	Influence of cytoskeleton organization on recombinant protein expression by CHO cells. Biotechnology and Bioengineering, 2020, 117, 1117-1126.	3.3	14
22	Transient vitamin B5 starving improves mammalian cell homeostasis and protein production. Metabolic Engineering, 2020, 60, 77-86.	7.0	13
23	A PiggyBac-mediated approach for muscle gene transfer or cell therapy. Stem Cell Research, 2014, 13, 390-403.	0.7	12
24	MAR-mediated integration of plasmid vectors for in vivo gene transfer and regulation. BMC Molecular Biology, 2013, 14, 26.	3.0	10
25	Nuclear Factor lâ \in C acts as a regulator of hepatocyte proliferation at the onset of liver regeneration. Liver International, 2015, 35, 1185-1194.	3.9	10
26	Gene expression changes in chronic inflammatory demyelinating polyneuropathy skin biopsies. Journal of Neuroimmunology, 2014, 270, 61-66.	2.3	8
27	Automated microfluidic sorting of mammalian cells labeled with magnetic microparticles for those that efficiently express and secrete a protein of interest. Biotechnology and Bioengineering, 2017, 114, 1791-1802.	3.3	8
28	Characterization and mutagenesis of Chinese hamster ovary cells endogenous retroviruses to inactivate viral particle release. Biotechnology and Bioengineering, 2020, 117, 466-485.	3.3	8
29	CHO expression of a novel human recombinant IgG1 antiâ€RhD antibody isolated by phage display. British Journal of Haematology, 2000, 111, 157-166.	2.5	7
30	Stochastic Models and Numerical Algorithms for a Class ofÂRegulatory Gene Networks. Bulletin of Mathematical Biology, 2009, 71, 1394-1431.	1.9	6
31	Protein-Binding Microarray Analysis of Tumor Suppressor AP2α Target Gene Specificity. PLoS ONE, 2011, 6, e22895.	2.5	5
32	Rheological properties of skeletal muscles in a Duchenne muscular dystrophy murine model before and after autologous cell therapy. Journal of Biomechanics, 2021, 128, 110770.	2.1	4
33	PiggyBac transposase and transposon derivatives for gene transfer targeting the ribosomal DNA loci of CHO cells. Journal of Biotechnology, 2021, 341, 103-112.	3.8	4
34	Genomeâ€wide analysis of single nucleotide variants allows for robust and accurate assessment of clonal derivation in cell lines used to produce biologics. Biotechnology and Bioengineering, 2020, 117, 3628-3638.	3.3	2
35	Characterization of mesoangioblast cell fate and improved promyogenic potential of a satellite cell-like subpopulation upon transplantation in dystrophic murine muscles. Stem Cell Research, 2019, 41, 101619.	0.7	1
36	A regulatory network for the efficient control of transgene expression. Journal of Gene Medicine, 2000, 2, 107-116.	2.8	1

3

#	Article	IF	CITATIONS
37	Front Cover Image, Volume 117, Number 2, February 2020. Biotechnology and Bioengineering, 2020, 117, i.	3.3	O
38	Back Cover Image, Volume 117, Number 12, December 2020. Biotechnology and Bioengineering, 2020, 117, iii.	3.3	0