List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1312676/publications.pdf

Version: 2024-02-01

		623734	395702
58	2,484	14	33
papers	citations	h-index	g-index
59	59	59	2390
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers. IEEE Transactions on Power Electronics, 2009, 24, 1819-1825.	7.9	753
2	Mobile Vehicle-to-Vehicle Narrow-Band Channel Measurement and Characterization of the 5.9 GHz Dedicated Short Range Communication (DSRC) Frequency Band. IEEE Journal on Selected Areas in Communications, 2007, 25, 1501-1516.	14.0	588
3	Toward understanding characteristics of dedicated short range communications (DSRC) from a perspective of vehicular network engineers. , $2010, , .$		209
4	Performance of the 802.11p Physical Layer in Vehicle-to-Vehicle Environments. IEEE Transactions on Vehicular Technology, 2012, 61, 3-14.	6.3	175
5	Multipath-Enabled Super-Resolution for rf and Microwave Communication using Phase-Conjugate Arrays. Physical Review Letters, 2004, 93, 243904.	7.8	110
6	A Measurement Study of Time-Scaled 802.11a Waveforms Over The Mobile-to-Mobile Vehicular Channel at 5.9 GHz., 2008, 46, 84-91.		65
7	Integrated electro-optic lens/scanner in a LiTaO_3 single crystal. Applied Optics, 1999, 38, 1186.	2.1	55
8	Phenomenological propagation loss theory for magnetostatic waves in thin ferrite films. Journal of Applied Physics, 1986, 59, 218-224.	2.5	43
9	Doppler Spread and Coherence Time of Rural and Highway Vehicle-to-Vehicle Channels at 5.9 GHz., 2008,,.		39
10	Experimental Demonstration of Complex Image Theory and Application to Position Measurement. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 282-285.	4.0	37
11	FPGA-Based Channel Simulator for a Wireless Network Emulator. , 2009, , .		36
12	Three-dimensional position and orientation measurements using magneto-quasistatic fields and complex image theory [measurements corner]. IEEE Antennas and Propagation Magazine, 2014, 56, 160-173.	1.4	35
13	A Roadside Scattering Model for the Vehicle-to-Vehicle Communication Channel. IEEE Journal on Selected Areas in Communications, 2013, 31, 449-459.	14.0	34
14	Dynamic channel equalization for IEEE 802.11p waveforms in the vehicle-to-vehicle channel., 2010,,.		31
15	Highway and rural propagation channel modeling for vehicle-to-vehicle communications at 5.9 GHz., 2008,,.		29
16	Observation of an inverse Doppler shift from left-handed dipolar spin waves. Physical Review B, 2006, 74, .	3.2	27
17	An optical frequency shifter using magnetostatic waves. Journal of Applied Physics, 1990, 67, 508-510.	2.5	22
18	Time Reversal Detection in Clutter: Additional Experimental Results. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47, 140-154.	4.7	19

#	Article	IF	Citations
19	Long Range Passive UHF RFID System Using HVAC Ducts. Proceedings of the IEEE, 2010, 98, 1629-1635.	21.3	15
20	Long distance signaling using axionlike particles. Physical Review D, 2007, 76, .	4.7	14
21	A Multi-hop Mobile Networking Test-bed for Telematics. , 2005, , .		12
22	Kronig–Penney model for periodically segmented waveguides. Applied Optics, 1996, 35, 4767.	2.1	10
23	Improved wireless power transfer efficiency with non-perfect lenses. Applied Physics Letters, 2019, 114, 143903.	3.3	10
24	Eigenfrequencies of a Truncated Conical Resonator via the Classical and Wentzel–Kramers–Brillouin Methods. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 1909-1916.	4.6	8
25	Thinâ€film permanent magnet requirements for magnetic devices in MMIC. Microwave and Optical Technology Letters, 1989, 2, 81-85.	1.4	7
26	A new geometrical channel model for vehicle-to-vehicle communications. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	7
27	Magneto-Quasistatic Tracking of an American Football: A Goal-Line Measurement [Measurements Corner]. IEEE Antennas and Propagation Magazine, 2013, 55, 138-146.	1.4	7
28	Estimating the number of modes in multimode waveguide propagation environment. , $2011, \ldots$		6
29	Error Reduction in Magnetoquasistatic Positioning Using Orthogonal Emitter Measurements. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1462-1465.	4.0	6
30	Experimental study on the effects of groups of people on magnetoquasistatic positioning accuracy. , $2012, , .$		6
31	Ferroelectrics as a versatile solid state platform for integrated optics. Integrated Ferroelectrics, 1998, 22, 465-471.	0.7	5
32	<title>Experimenatal test bed for hybrid recording</title> ., 2002, 4342, 502.		5
33	An active position sensing tag for sports visualization in American football. , 2013, , .		5
34	Channel Propagation Measurement and Modeling for Vehicular In-Cabin Wi-Fi Networks. IEEE Transactions on Antennas and Propagation, 2016, 64, 5424-5435.	5.1	5
35	A study of near-field aperture geometry effects on very small aperture lasers (VSAL). , 2003, , .		4
36	Efficient Simulation of Mobile-To-Mobile Rayleigh Fading using Gaussian Quadrature. IEEE Vehicular Technology Conference, 2007, , .	0.4	4

#	Article	IF	CITATIONS
37	Properties and Applications of the Suburban Vehicle-to-Vehicle Propagation Channel at 5.9 GHz., 2007, , \cdot		4
38	Wireless orientation sensing using magnetoquasistatic fields and complex image theory. , 2012, , .		4
39	<title>Optical fields of a subwavelength metal aperture in a very small aperture laser (VSAL) /title>., 2002,,.</th><th></th><th>3</th></tr><tr><th>40</th><th>REAL: the remote educational antenna laboratory. , 2007, , .</th><th></th><th>3</th></tr><tr><th>41</th><th>Antenna Array Detection in Highly Cluttered Environment Using Time Reversal Method. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .</th><th>0.0</th><th>3</th></tr><tr><th>42</th><th>Search for possible solar influences in Ra-226 decays. Results in Physics, 2017, 7, 385-406.</th><th>4.1</th><th>3</th></tr><tr><th>43</th><th>Effective Interaction Lengths In The Collinear Magnetostatic Wave - Optical Interaction. Proceedings of SPIE, 1990, 1177, 365.</th><th>0.8</th><th>2</th></tr><tr><th>44</th><th>Linear motion sensor using the Doppler effect with magnetostatic waves. Journal of Applied Physics, 1990, 67, 511-514.</th><th>2.5</th><th>2</th></tr><tr><th>45</th><th>Orientation dependence of dipole gaps in the magnetostatic wave spectrum of Biâ€substituted iron garnets. Journal of Applied Physics, 1994, 75, 6066-6068.</th><th>2.5</th><th>2</th></tr><tr><th>46</th><th>Polarization Sensitive time reversal SAR imaging in an environment filled with trees. , 2007, , .</th><th></th><th>2</th></tr><tr><th>47</th><th>Synthetic Aperture Radar Ghost Image Cancellation Using Broadband Time Reversal Averaging Techniques. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .</th><th>0.0</th><th>2</th></tr><tr><th>48</th><th>Improved Channel Sounding Using Zero Correlation Zone Sequences. , 2009, , .</th><th></th><th>2</th></tr><tr><th>49</th><th>Evidence for acousticâ€wave coupling in the magnetostaticâ€wave–optical interaction. Journal of Applied Physics, 1990, 67, 4790-4792.</th><th>2.5</th><th>1</th></tr><tr><th>50</th><th><</math>title>High-density substrate incident magneto-optic recording using a solid immersion lens <math display="inline"><</math> /title>. , 2002, 4342, 213.</th><th></th><th>1</th></tr><tr><th>51</th><th>Proximity and Orientation Sensing Using Magnetoquasistatic Fields and Complex Image Theory. , 2011, , .</th><th></th><th>1</th></tr><tr><th>52</th><th>Special Section on Vehicular Networks and Communication Systems: From Laboratory into Reality. IEEE Transactions on Vehicular Technology, 2013, 62, 4146-4149.</th><th>6.3</th><th>1</th></tr><tr><th>53</th><th>The remote educational antenna laboratory: making it easier to add projects to antenna courses [education column]. IEEE Antennas and Propagation Magazine, 2014, 56, 211-220.</th><th>1.4</th><th>1</th></tr><tr><th>54</th><th>Efficiency of light coupling from a light delivery system to a planar waveguide for optical and hybrid recording heads., 2003,,.</th><th></th><th>0</th></tr></tbody></table></title>		

#	Article	lF	CITATIONS
55	Crossed monopole array for single mode excitation of ventilation duct communication channels. , 2007, , .		O
56	Experimental Demonstration of Time-Reversal MISO and MIMO Arrays with IEEE 802.11g Devices through a Ventilation Duct Channel. IEEE Vehicular Technology Conference, 2007, , .	0.4	0
57	Design of an Overmoded-Waveguide Directional Antenna for Use in In-Building Ventilation Duct Wireless Networks. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	O
58	Radio channel in a minivan's passenger cabin: Preliminary ray tracing simulations. , 2014, , .		0